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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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The world is based to a large content on Partial Differential Equations. In 

this book explained how Partial Differential Equations are useful in day 

to day life. 

Examples are the vibrations of solids, the flow of fluids, the diffusion of 

chemicals, the speed of the heat, the structure of molecules and radiation 

of electromagnetic waves. Provided most important proofs and solved 

examples.  

This block contents Elliptic Partial Differential Equations, The heat and 

Schrodinger equations, Solutions of wave equations and Separation of 
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UNIT-8 ELLIPTIC PDES  
 

STRUTURE 

8.0 Objective 

8.1 Introduction 

8.2 Weak formulation of the Dirichlet problem 

8.3 Varition formulation 

8.4 The space 

8.5 The Poincare  

8.6 Existence of weak solutions of the Dirichlet problem 

8.7 General linear, second order elliptic PDEs 

8.8 Let us sum up 

8.9 Key words 

8.10 Questions for review 

8.11 Suggestive readings and reference 

8.12 Answers to check your progress 

8.0 OBJECTIVE 
 

In this we will learn and understand about Weak formulation of Dirichlet 

problem, Variational formulation, The space, The Poincare inequality, 

Existence of weak solution of the Dirichlet problem, General linear, 

second order elliptic. 

8.1 INTRODUCTION 
 

One of the main advantages of extending the class of solutions of a PDE 

from classical solutions with continuous derivatives to weak solutions 

with weak derivatives is that it is easier to prove the existence of weak 

solutions. Having established the existence of weak solutions, one may 
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then study their properties, such as uniqueness and regularity, and 

perhaps prove under appropriate assumptions that the weak solutions are, 

in fact, classical solutions. There is often considerable freedom in how 

one defines a weak solution of a PDE; for example, the function space to 

which a solution is required to belong is not given a priori by the PDE 

itself. Typically, we look for a weak formulation that reduces to the 

classical formulation under appropriate smoothness assumptions and 

which is amenable to a mathematical analysis; the notion of solution and 

the spaces to which solutions belong are dictated by the available 

estimates and analysis. 

8.2 WEAK FORMULATION OF THE 

DIRICHLET PROBLEM 
 

Let us consider the Dirichlet problem for the Laplacian with 

homogeneous boundary conditions on a bounded domain Ω in nR , 

(8.1)     -Δu = f in  , 

(8.2)     u = 0 on   

First, suppose that the boundary of Ω is smooth and u, f : R  are 

smooth functions. Multiplying (8.1) by a test function φ, integrating the 

result over Ω, and using the divergence theorem, we get 

(8.3)    Du. dx f dx
 

      for all  cC  . 

The boundary terms vanish because 0   on the boundary. Conversely, 

if f and Ω are smooth, then any smooth function u that satisfies (8.3) is a 

solution of (8.1). Next, we formulate weaker assumptions under which 

(8.3) makes sense. We use the flexibility of choice to define weak 

solutions with L
2
-derivatives that belong to a Hilbert space; this is 

helpful because Hilbert spaces are easier to work with than Banach 

spaces. Furthermore, it leads to a variational form of the equation that is 

symmetric in the solution u and the test function  . Our goal of 

obtaining a symmetric weak formulation also explains why we only 

integrate by parts once in (8.3). We briefly discuss some other ways to 

define weak solutions at the end of this section. 
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We would need to use Banach spaces to study the solutions of Laplace‘s 

equation whose derivatives lie in L
p
 for p 2 , and we may be forced to 

use Banach spaces for some PDEs, especially if they are nonlinear. 

By the Cauchy-Schwartz inequality, the integral on the left-hand side of 

(8.3) is finite if Du belongs to  2L  , so we suppose that u ∈ H
1
(Ω). We 

impose the boundary condition (8.2) in a weak sense by requiring that 

 1

0u H  . The left hand side of (8.3) then extends by continuity to 

   1

0 cH C    . The right hand side of (8.3) is well-defined for 

   1 2

0H if f L    , but this is not the most general f for which it 

makes sense; we can define the right-hand for any f in the dual space of 

 1

0H  . 

DEFINATION 8.1.  

The space of bounded linear maps  1

0f : H R   is denoted by 

   
*1 1

0H H   , and the action of  1f H   on  1

0H   by f , . 

The norm of  1f H   is given by 

1

1
0

1

0H

H

f ,
|| f || sup : H , 0

|| ||


  
    

  

 

A function  2f L   defines a linear functional  1

fF H   by 

  2f L
F , f dx f ,      for all  1

0H   

Here (.,.)  2L denotes the standard inner product on  2L  . The 

functional fF  is bounded on  1

0H   with 1 2f H L
|| F || || f ||  since, by the 

Cauchy-Schwartz inequality, 

2 2 2 1
0

f L L L H
F , || f || || || || f || || ||     . 

We identify Ff with f, and write both simply as f.  

Such linear functionals are, however, not the only elements of H
−1

(Ω). 

As we will show below, H
−1

(Ω) may be identified with the space of 

distributions on Ω that are sums of first-order distributional derivatives of 



Notes 

9 

functions in L
2
(Ω). Thus, after identifying functions with regular 

distributions, we have the following triple of Hilbert spaces 

         1 2 1 1 1

0 0H L H , H H          

Moreover, if    2 1f L H     and  1

0u H  , 

 then   2L
f ,u f ,u , 

So the duality pairing coincides with the L
2
-inner product when both are 

defined. This discussion motivates the following definition. 

DEFINITION 8.2 

Let   be an open set in nR  and  1f H  . A function u : R  is a 

weak solution of (8.1) – (8.2) if :      1

0a u H ; b   

(8.4)   Du.D dx f ,


    for all  1

0H  . 

Here, strictly speaking, ‗function‘ means an equivalence class of 

functions with respect to pointwise a.e. equality.  

We have assumed homogeneous boundary conditions to simplify the 

discussion. If Ω is smooth and g : ∂Ω → R  is a function on the boundary 

that is in the range of the trace map  

T : H
1
(Ω) → L

2
(∂Ω), say g = Tw, then we obtain a weak formulation of 

the non-homogeneous Dirichet problem  

-∆u = f in Ω, 

u = g on ∂Ω, 

by replacing (a) in Definition 8.2 with the condition that  1

0u w H    

The definition is otherwise the same. The range of the trace map on 

H
1
(Ω) for a smooth domain Ω is the fractional-order Sobolev space 

 
1

2H  ; thus if the boundary data g is so rough that  
1

2g H  , then 

there is no solution u ∈ H
1
(Ω) of the nonhomogeneous BVP. 

Finally, we comment on some other ways to define weak solutions of 

Poisson‘s equation. If we integrate by parts again in (8.3), we find that 

every smooth solution u of (8.1) satisfies 
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(8.5)    u dx f dx
 

      for all  cC   

This condition makes sense without any diff erentiability assumptions on 

u, and we can define a locally integrable function  1

locu L  ) to be a 

weak solution of −∆u = f for  1

locf L   if it satisfies (8.5). One problem 

with using this definition is that general functions  pu L  do ot have 

enough regularity to make sense of their boundary values on 2 . 

More generally, we can define distributional solutions  'T D  of 

Poisson‘sequation T f   with  f D'   by 

(8.6)    T, f ,     for all  cC   

While these definitions appear more general, because of elliptic 

regularity they turn out not to extend the class of variational solutions we 

consider here if  1f H  , and we will not use them below. 

8.3 VARIATIONAL FORMULATION 
 

DEFINITION 8.2 

Of a weak solution in is closely connected with the variational 

formulation of the Dirichlet problem for Poisson‘s equation. To explain 

this connection, we first summarize some definitions of the 

diff erentiability of functionals (scalar-valued functions) acting on a 

branch space. 

 DEFINITION 8.3. 

 A functional J : X → R  on a branch space X is differentiable at x ∈ X if 

there is a bounded linear functional A : X → R  such that 

   
h 0

K x h J x Ah
lim 0

|| h || x

  
  

If A exists, then it is unique, and it is called the derivative, or 

differentiable, of J at x, denoted     DJ x A . 
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This definition expresses the basic idea of a differentiable function as one 

which can be approximated locally by a linear map. If J is differentiable 

at every point of X, then  :  *DJ X X maps x X to the linear 

functional  DJ x X  that approximates J near 
2x For example, if  is 

bounded and   is smooth, then point wise evaluation |  on 

 C  extends to a bounded, linear trace map    1/2 :    s sT H H  

if   1/ 2s  but not if   1/ 2s  . In particular, there is no sensible 

definition of the boundary values of a general function  

u ∈ L
2
(Ω). We remark, however, that if u ∈ L

2
(Ω) is a weak solution of 

−∆u = f where  

 2f L  , then elliptic regularity implies that  2u H  , so it does 

have a well-defined boundary value  3/2|u H  ; on the other hand, 

if  2f H   , then  2u L  and we cannot make sense of .|u   

A weaker notion of differentiability (even for functions 2J : R R see   

Example 8.8 is the existence of directional derivatives 

 
   

  0
0

J x h J x d
J x;h lim J x h |

d




   
    

  
 

If the directional derivative at x exists for every h X and is a bounded 

linear functional on h, then    ;   J x h J x h  where  J x X  . We 

call  J x  the Gateaux derivative of J at x. The derivative DJ is then 

called the Frechet derivative to distinguish it from the directional or 

Gateaux derivative. If J is differentiable at x, then it is Gateaux- 

differentiable at x and      DJ x J x , but the converse is not true. 

Example 8.4 

 Define 2f : R R  by  f 0,0 0  and  
2

2

2 4

x
f x, y

x y

 
  

 
 if 

   x, y 0,0 . 

Then f is Gateaux-differentiable at 0, with  f 0 0  , but f is not frechet 

differentiable at 0. 
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If J : X R  attains a local minimum at x X  and J is differentiable at x 

then for every h X  the function x:hJ : R R  defined by 

   x;hJ t J x th   is differentiable at 0t  and attains a minimum at 0t  . 

It follows that 

   x;hd.J
0 J x;h 0

dt
    for every h X . 

Hence  DJ x 0 . Thus, just as in multivariable calculus, an extreme 

point of a differentiable functional is a critical point where the derivative 

is zero. Given  1f H  , define a quadratic functional  1

0J : H R   by 

(8.7)      
21

J u Du dx f ,u
2 

   

Clearly, J is well-defined.  

Proposition 8.5.  

The functional  1

0J : H R   in (8.7) is diff erentiable. Its derivative 

   1

0DJ u : H R  at  1

0u H   is given by 

  1

0DJ u h Du.Dh dx f ,h for h H


     

Proof. Given  1

0u H  , define the linear map  1

0A : H R   by 

Ah Du.Dh dx f ,h


   

Then A is bounded, with 2 1L H
|| A || ||Du|| || f ||   , since 

 2 2 1 1 2 1 1
0 0L L H H L H H

Ah || Du || ||Dh || || f || || h || || Du || || f || || h || .      

For  1

0h H  , we have 

   
21

J u h J u Ah Dh dx.
2 

      

It follows that     1
0

2

H

1
| J u h J u Ah | || h || ,

2
     

8.4 THE SPACE  1H   
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And therefore 

   

1
0

h 0
H

J u h J u Ah
lim 0

|| h ||

  
  

Which proves that J is differentiable on  1

0H   with  DJ u A . 

Note that     0DJ u  if and only if u is a weak solution of Poisson‘s 

equation in the sense of Definition 8.2. Thus, we have the following 

result 

Corollary 8.6.  1

0J : H R  defined in (8.7) attains a minimum at 

 1

0u H  , then u is a weak solution of u f   in the sense of 

Definition 8.2. 

In the direct method of the calculus of variations, we prove the existence 

of a minimizer of J by showing that a minimizing sequence  nu  

converges in a suitable sense to a minimizer u. This minimizer is then a 

weak solution of (8.1)–(8.2). We will not follow this method here, and 

instead establish the existence of a weak solution by use of the Riesz 

representation theorem. The Riesz representation theorem is, however, 

typically proved by a similar argument to the one used in the direct 

method of the calculus of variations, so in essence the proofs are 

equivalent. 

The negative order Sobolev space  1H   can be described as a space of 

distributions on Ω. 

THEOREM 8.7.  

The space  1H   consists of all distributions  'f D   of the form 

(8.8)     
n

0 i i

i 1

f f f


    where  2

0 if ,f L   

These distributions extend uniquely by continuity from D(Ω) to bounded 

linear functionals on  1

0H  . Moreover, 

(8.9)  
 

 1

1
n 2

2

i 0 iH
i 0

|| f || inf f dx :such that f ,f satisfy 4.8  
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PROOF. First suppose that  1f H  . By the Riesz representation 

theorem there is a function  1

0g H  such that 

(8.10)      1
0H

f , g,    for all  1

0H   

Here,   1
0H

.,.  denotes the standard inner product on  1

0H   

   1
0H

u, u Du.D dx.


     

Identifying a function  2g L   with its corresponding regular 

distribution, restricting f to    1

0D H    , and using the definition of 

the distributional derivative, we have 

n

i i
Ω

i=1

f, = g dx + g dx


       

n

i i

i 1

g, g,


       

n

i i

i 1

g g ,


     for all  D   

where  2

i ig g L    . Thus the restriction of every f ∈ H
−1

(Ω) 

from  1

0H   to D(Ω) is a distribution 

n

i i

i 1

f g g


    

of the form (8.8). Also note that taking φ = g in (8.10), we get 

1
0

2

H
f ,g || g || which implies that 

1 1
0

1
n 2

2 2

iH H
i 1

|| f || || g || g dx g dx
 



 
   

 
   

which proves inequality in one direction of (8.9).  

Conversely, suppose that f ∈D′(Ω) is a distribution of the form (8.8). 

Then, using the definition of the distributional derivative, we have for 

any φ ∈D(Ω) that 

n n

0 i i 0 i i

i 1 i 1

f , f , f , f , f ,
 

            . 
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Use of the Cauchy-Schwartz inequality gives 

1
n 2

2 2

0 0 i i

i 1

f , f , f ,


 
      

 
  

Moreover, since the fi are regular distributions belonging to L
2
(Ω) 

   
1 1

2 22 2

i i i i i if , f dx f dx dx
  

          , 

So                    
1/ 2

n
2 2 2 2

0 i i

i 1

f , f dx dx f dx dx
   



 
      

 
     

And 

 
1

2

1
0

1
1n n 2

22 2 2 2 2

0 i i i H
i 1 i 0

f , f dx f dx dx f dx || ||
    

 

  
          

   
       

Thus the distribution f : D(Ω) → R  is bounded with respect to the 

 1

0H  -norm on the dense subset D(Ω). It therefore extends in a unique 

way to a bounded linear functional on  1

0H  , which we still denote by f. 

Moreover, 

1

1
n 2

2

iH
i 0

|| f || f dx




 
  
 
  

which proves inequality in the other direction of (8.9). 

The dual space of  1H  cannot be identified with a space of 

distributions on  because  D   is not a dense subspace. Any linear 

functional  1f H


   defines a distribution by restriction to  D  , but 

the same distribution arises from differentiable linear functionals. 

Conversely, any distribution  T D   that is bounded with respect to 

the 1H  norm extends uniquely to a bounded linear functional on
1  0H , 

but the extension of the functional to the orthogonal complement  10H


 

in 1H is arbitrary (subject to maintaining its boundedness). Roughly 

speaking, distributions are defined on functions whose boundary values 

or trace is zero, but general linear functionals on H
1
 depend on the trace 

of the function on the boundary . 
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Example 8.8. The one-dimensional Sobolev space H
1
(0,1) is embedded 

in the space C([0,1]) of continuous functions, since p > n for p = 2 and n 

= 1. In fact, according to the Sobolev embedding theorem 

    1 0 1/ 2H 0,1 C 0,1 , as can be seen directly from the Cauchy-Schwartz 

inequality: 

     
x

'

y
f x f y f t dt    

    
1 1

x x2 22

y y
1dt f ' t dt    

  
1

1 122
2

0
f ' t dt x y   

As usual, we identify an element of H
1
(0,1) with its continuous 

representative in C([0,1]). By the trace theorem,  

        1 1

0H 0,1 u H 0,1 : u 0 0,u 1 0     

The orthogonal complement is  

        1

1 1 1

0 0H
H 0,1 u H 0,1 :such that u, 0forevery H 0,1


     . 

This condition implies that  1

0u H 0,1


 if and only if  

 
1

0
u u ' ' dx 0    for all  1

0H 0,1  

which means that u is a weak solution of the ODE  

−u′′ + u = 0. 

It follows that   x x

1 2u x c c c e ,   

 so    1 1

0H 0,1 H 0,1 E   

 where E is the two dimensional subspace of H
1
(0,1) spanned by the 

orthogonal vectors  x xe ,e Thus,  

   
*1 1 *H 0,1 H 0,1 E   

If  
*1f H 0,1  and x x

0 1 2u u c e c e    where  1

0 0u H 0,1 , then 
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0 0 1 1 2 2f ,u f ,u a c a c    

Where  1

0f H 0,1  is the restriction of f to  1

0H 0,1  and 

x x

1 2a f ,e , a f ,e   

The constants a1, a2 determine how the functional f ∈ H
1
(0,1)∗ acts on the 

boundary values u(0), u(1) of a function u ∈ H
1
(0,1). 

8.5 THE POINCARE INEQUALITY FOR 

 1

0H   
 

We cannot, in general, estimate a norm of a function in terms of a norm 

of its derivative since constant functions have zero derivative. Such 

estimates are possible if we add an additional condition that eliminates 

non-zero constant functions. For example, we can require that the 

function vanishes on the boundary of a domain, or that it has zero mean. 

We typically also need some sort of boundedness condition on the 

domain of the function, since even if a function vanishes at some point 

we cannot expect to estimate the size of a function over arbitrarily large 

distances by the size of its derivative. The resulting inequalities are 

called Poincare inequalities.  

The inequality we prove here is a basic example of a Poincare inequality. 

We say that an open set Ω in nR  is bounded in some direction if there is 

a unit vector ne R  and constants a, b such that a x.e b   for all x∈ Ω. 

THEOREM 8.9. 

Suppose that Ω is an open set in R
n
 that is bounded is some direction. 

Then there is a constant C such that 

(8.11)    
22u dx C Du dx

 
   for all  1

0u H   

PROOF. Since  cC   is dense in  1

0H  , it is sufficient to prove the 

inequality for  cu C  .  



Notes 

18 

The inequality is invariant under rotations and translations, so we can 

assume without loss of generality that the domain is bounded in the nx   

direction and lies between 0 <xn< a. 

Writing  1

nx x , x  where  1

1 n 1x x ,.......,, x ,  we have 

     
nx a

1 ' '

n n n
0 0

u x ,x u x , t dt u x , t dt     . 

The Cauchy-Schwartz inequality implies that 

      
1

2 2a a
' ' 1/ 2 '

n n n
0 0 0

a u x , t dt 1. u x , t dt a u x , t dt        

Hence, 

   
2 2n

' '

n n
0

u x ,x a u x , t dt   

Integrating this inequality with respect to xn, we get  

   
2 2a a

' 2 '

n n n
0 0

u x ,x dx a u x , t dt    

A further integration with respect to x′ gives  

   
2

22

nu x dx a u x dx.
 

    

Since nu Du  , the result follows with 2C a . 

Check your progress 

1. Prove: Suppose that Ω is an open set in Rn that is bounded is some 

direction. Then there is a constant C such that for all  . 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

8.6 EXISTENCE OF WEAK SOLUTIONS 

OF THE DIRICHLET PROBLEM 
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This inequality implies that we may use as an equivalent inner-product 

on 1

0H an expression that involves only the derivatives of the functions 

and not the functions themselves. 

Corollary 8.10. If Ω is an open set that is bounded in some direction, 

then  1

0H   equipped with the inner product 

(8.12)  
0

u, Du . D dx


    

is a Hilbert space, and the corresponding norm is equivalent to the 

standard norm on  1

0H  . 

PROOF. We denote the norm associated with the inner-product (8.12) 

by 

 
1

2 2

0
u Du dx


   

And the standard norm and inner product by 

(8.13)  
1
222

1
u u Du dx



  
   

   
1

u, u Du.D dx


      

Then, using the Poincare inequality (8.11), we have 

 
1
2

0 1 0
u u C 1 u   . 

Thus, the two norms are equivalent; in particular,   1

0 0
H , .,. is complete 

since   1

0 1
H , .,. is complete, so it is a Hilbert space with respect to the 

inner product (8.12). 

Existence of weak solutions of the Dirichlet problem with these 

preparations, the existence of weak solutions is an immediate 

consequence of the Riesz representation theorem. 

THEOREM 8.11. Suppose that   is an open set in nR that is bounded 

in some direction and  1f H  . Then there is a unique weak solution 

 1

0u H   of u f  in the sense of Definition 8.2. 
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PROOF. Proof. We equip  1

0H   with the inner product (8.12). Then, 

since Ω is bounded in some direction, the resulting norm is equivalent to 

the standard norm, and f is a bounded linear functional on     1

0 0
H , , . 

By the Riesz representation theorem, there exists a unique  1

0u H   

such that 

   1

00
u, = f, for all u H Ω    

Which is equivalent to the condition that u is a weak solution.  

The same approach works for other symmetric linear elliptic PDEs. Let 

us give some examples. 

EXAMPLE 8.12. Consider the Dirichlet problem 

u u f in     

u 0 on   

Then  1

0u H   is a weak solution if 

 Du,D + u dx f ,


     for all  1

0H   

This is equivalent to the condition that 

   1

01
u, f , for all H      

where (·,·)1 is the standard inner product on  1

0H  ) given in (8.13). 

Thus, the Riesz representation theorem implies the existence of a unique 

weak solution. Note that in this example and the next, we do not use the 

Poincare inequality, so the result applies to arbitrary open sets, including 

nR . In that case,    1 n 1 n

0H R H R , and we get a unique solution 

 1 nu H R  of u u f    for every  1 nf H R . Moreover, using the 

standard norms, we have 1 1H H
u f  . Thus the operator I   is an 

isometry of  1 nH R  onto  1 nH R .  

Example 8.13. As a slight generalization of the previous example, 

suppose that µ > 0. A  1

0u H  is a weak solution of 
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(8.14)     u u f in     

u 0 on   

If  u, f ,


    for all  1

0H   where 

   u, u Du.D dx
 

      

The norm .

 associated with this inner product is equivalent to the 

standard one, since 

2 2 2

1

1
u u C u

C  
   

Where  1C max , 


. We therefore again get the existence of a 

unique weak solution from the Riesz representation theorem. 

Example 8.14.  

Consider the last example for µ < 0. If we have a Poincare inequality 

2 2L L
u C Du for Ω, which is the case if Ω is bounded in some 

direction, then 

     
2 22u,u u Du dx 1 C Du dx

  
        

Thus u


 defines a norm on  1

0H   that is equivalent to the standard 

norm if 
1

0
C


   , and we get a unique weak solution in this case also, 

provided that   is sufficiently small. 

For bounded domains, the Dirichlet Laplacian has an infinite sequence of 

real eigenvalues  n : n R   such that there exists a nonzero solution 

 1

0 nu H of u u     . The best constant in the Poincare inequality 

can be shown to be the minimum eigenvalue λ1, and this method does not 

work if µ ≤−λ1. For µ =−λn, a weak solution of (8.14) does not exist for 

every  1f H  , and if one does exist it is not unique since we can add 

to it an arbitrary eigenfunction. Thus, not only does the method fail, but 

the conclusion of Theorem 8.11 may be false. 
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Check your progress 

2. Explain about existence of week solutions. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

8.7 GENERAL LINEAR, SECOND ORDER 

ELLIPTIC PDES 
 

Example 8.15. Consider the second order PDE 

(8.15)      
n

i ij i

i, j 1

a u f in


      

where the coefficient functions 
ija : R are symmetric  ij ija a , 

bounded, and satisfy the uniform ellipticity condition that for some 0   

 
n

2

ij i j

i, j 1

a x


      for all x  and all 
nR . 

Also, assume that Ω is bounded in some direction. Then a weak 

formulation of (8.15) is that  1

0u H   and 

 a u, f ,    for all  1

0H   

Where the symmetric bilinear form    1 1

0 0a : H H R     is defined 

by 

 
n

ij i j

i, j 1

a u, a u dx.


      

The boundedness of 
ija , the uniform ellipticity condition, and the 

Poincare inequality imply that a defines an inner product on 1

0H  which is 

equivalent to the standard one. An application of the Riesz representation 

theorem for the bounded linear functionals f on the Hilbert space  1

0H ,a  

then implies the existence of a unique weak solution. We discuss a 

generalization of this example in greater detail in the next section. 
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General linear, second order elliptic PDEs 

Consider PDEs of the form 

Lu = f 

where L is a linear differential operator of the form 

(8.16)       
n n

i ij j i i

i, j 1 i 1

Lu a u b u cu
 

         

acting on functions u :  where Ω is an open set in Rn. A physical 

interpretation of such PDEs is described briefly in Section 8.A. 

We assume that the given coefficients functions 
ij ia ,b ,c : R satisfy 

(8.17)    ij i ij jia ,b ,c L , a a   . 

The operator L is elliptic if the matrix (aij) is positive definite. We will 

assume the stronger condition of uniformly ellipticity given in the next 

definition. 

Definition 8.16. The operator L in (8.16) is uniformly elliptic on Ω if 

there exists a constant θ > 0 such that 

(8.18)     
n

2

ij i j

i, j 1

a x


      

For x almost every where in   and every 
nR . 

This uniform ellipticity condition allows us to estimate the integral of 

2
Du  in terms of the integral of ij i ja u u  . 

Example 8.17. The Laplacian operator L = −∆ is uniformly elliptic on 

any open set, with θ = 1. 

Example 8.18. The Tricomi operator 

2 2

x yL y    

is elliptic in y>0 and hyperbolic in y<0. For any 0 1 , L is uniformly 

elliptic in the strip   x, y : y 1  , with , but it is not uniformly 

elliptic in   x, y : 0 y 1  . 
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For R , we consider the Dirichlet problem for L I,  

(8.19)     Lu u f   in   

     u=0 on   

We motivate the definition of a weak solution of (8.19) in a similar way 

to the motivation for the Laplacian: multiply the PDE by a test function 

 cC  , integrate over Ω, and use integration by parts, assuming that 

all functions and the domain are smooth. Note that 

 i i i ib u dx b u dx.
 
        

This leads to the condition that  1

0u H   is a weak solution of (8.19) 

with L given by (8.16) if 

n n

ij i j i i

i, j 1 i 1

a u b u cu dx u u dx f ,
 

 

 
          

 
    

For all  1

0H  . 

To write this condition more concisely, we define a bilinear form 

   1 1

0 0a : H H R    by 

(8.20)  
n n

ij i i i i

i, j 1 i

a u, a u b u cu dx.




 
        

 
   

Definition 8.19. Suppose that Ω is an open set in  n 1R ,f H  , and L 

is a differential operator (8.16) whose coefficients satisfy (8.17). Then 

u : R  is a weak solution of (8.19) if:      1

0a u H ; b   

    2L
a u, u, f ,      for all  1

0H  . 

The form a in (8.20) is not symmetric unless ib 0 . We have 

   *a ,u a u,    

Where 
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(8.21)      
n n

*

ij i j i i

i, j 1 i

a u, a u b u cu




 
        

 
   

is the bilinear form associated with the formal adjoint L∗ of L, 

(8.22)    
n n

*

i ij i i i

i, j 1 i 1

L u a u b u cu
 

        . 

The proof of the existence of a weak solution of (8.19) is similar to the 

proof for the Dirichlet Laplacian, with one exception. If L is not 

symmetric, we cannot use a to define an equivalent inner product on 

 1

0H   and appeal to the Riesz representation theorem. Instead we use a 

result due to Lax and Milgram which applies to non-symmetric bilinear 

forms.3 

Check your progress 

3. Discuss about general linear, second order elliptic PDEs. 

------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------- 

8.8 LET US SUM UP 
 

In this unit we have discussed about weak formulation of the Dirichlet 

problem, Variation formulation, The space, The Poincare inequality, 

Existence of weak solutions of the Dirichlet problem, General linear, 

second order elliptic PDEs. Of a weak solution in is closely connected 

with the variational formulation of the Dirichlet problem for Poisson‘s 

equation. The negative order Sobolev space  1H   can be described as 

a space of distributions on Ω. If Ω is an open set that is bounded in some 

direction, then  1

0H   equipped with the inner product 

 
0

u, Du . D dx


   is a Hilbert space, and the corresponding norm is 

equivalent to the standard norm on  1

0H  . 

8.9 KEY WORDS  
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1.Dirichlet problem for the Laplacian with homogeneous boundary 

conditions. 

2.Of a weak solution in is closely connected with the variational 

formulation of the Dirichlet problem for Poisson‘s equation. 

3.The space  1H   consists of all distributions  'f D   of the form  

n

0 i i

i 1

f f f


  
 where  2

0 if ,f L   

4.If Ω is an open set that is bounded in some direction, then  1

0H   

equipped with the inner product. 

5.The Laplacian operator L = −∆ is uniformly elliptic on any open set, 

with θ = 1. 

8.10 QUESTIONS FOR REVIEW 
 

1.Discuss about weak formulation of the Dirichlet problem 

2.Discuss about variation formulation 

3.Discuss about Poincare inequality 

4.Discuss about general linear, second order elliptic PDEs 
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8.12 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 8.5 

2. See section 8.6 

3. See section 8.7 
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UNIT-9 THE LAX-MILGRAM 

THEOREM AND GENERAL 

ELLIPTIC PDES 
 

STRUTURE 

9.0 Objective 

9.1 Introduction 

9.2 The Lax-Milgram theorem 

9.3 Compactness of the resolvent 

9.4 The Fredholm alternative 

9.5 The spectrum of a self –adjoint elliptic operator 

9.6 Interior regularity 

9.7 Boundary regularity 

9.8 Some further perspectives  

9.9 Let us sum up 

9.10 Key words 

9.11 Questions for review 

9.12 Suggestive readings and references 

9.13 Answers to check your progress 

9.0 OBJECTIVE 
 

In this unit we will learn about The Lax-Milgram theorem, Compactness 

of the resolvent, The Fredholm alternative, The spectrum of a self –

adjoint elliptic operator, Interior regularity, Boundary regularity, Some 

further perspectives. 

9.1 INTRODUCTION 
 



Notes 

29 

We begin by stating the Lax-Milgram theorem for a bilinear form on a 

Hilbert space. Afterwards, we verify its hypotheses for the bilinear form 

associated with a general second-order uniformly elliptic PDE and use it 

to prove the existence of weak solutions. 

9.2 THE LAX-MILGRAM THEOREM 
 

THEOREM 9.1. Let H be Hilbert space with inner-product 

 .,. : H H R,  and let a : H H R,  be a bilinear form on H. Assume 

that there exist constants 1 2C ,C 0 such that 

   
2

1 , , ,C u a u u a u v  for all , u v H  

Then for every bounded linear functional :f H R , there exists a 

unique u H  such that 

 , , f v a u v for all v H  

The verification of the hypotheses for (9.1) depends on the following 

energy estimates. 

THEOREM 9.2. Let a be the bilinear form on  1

0 H  defined in (9.1), 

where the coefficients satisfy (8.17) and the uniform ellipticity condition 

(8.18) with constant  . Then there exist constant 1 2, 0C C  and R  

such that for all  1

0,  u v H  

(9.4)     1 2
0

2 2

1 ,  
H L

C u a u u u  

(9.4)      1 1
0 0

2, 
H H

a u v C u v  

If b=0, we may take 0   c  where 0 inf , 0 c c and if b , we may 

take 

2

0

1

1

2 2





   




n

i L
i

b c  

PROOF. First, we have for any  1

0,  u v H  that 
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, 1 1

, .
  

 

        
n n

ij i i i i

i j i

a u v a u v dx bu v dx cuv dx  

2 2

, 1





  
n

ij i jLL L
i j

a u v  

2 2 2 2

1





  
n

ij iL L L L LL
i

a u v c u v  

1 1
0 0

, 1 1

 

 

 
   

 
 

n n

ij i L L H HL
i j i

C a b c u v  

Which shows (9.5). 

Second, using the uniform ellipticity condition (4.18), we have 

2

22


  L

Du Du dx  

, 1




   
n

ij i j

i j

a u udx  

  2

1

,
 



    
n

i i

i

a u v bu udx cu dx  

  2

0

1

,
 



    
n

i i

i

a u u bu u dx c u dx  

  2 2 20

1

, 



   
n

i iL L L L
i

a u v b u u c u  

  2 2 20,  
L L L

a u u u Du c u , 

Where   0 .c x c a e . In  , and 

1
2

2

1





 
   

 


n

i L
i

b  

If 0  , we get (9.4) with 

0 1,    c C  

If 0  , by Cauchy‘s inequality with , we have for any 0  that 
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2 2 2 2

2 21

4
 

L L L L
u Du Du u . 

Hence, choosing 
2





, we get 

 2 2

2
2

0, ,
2 2

  
   

 
L L

Du a u u c u  

And (9.4) follows with 

2

0 1,
2 2 2

  
    


c C

 

Check your progress 

1. Explain about the Lax-Milgram theorem 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- 

9.3 COMPACTNESS OF THE RESOLVENT 
 

Equation (9.4) is called Garding‘s inequality; this estimate of the 1

0H -

norm of u in terms of a(u,u), using the uniform ellipticity of L, is the 

crucial energy estimate. Equation (9.5) states that the bilinear form a is 

bounded on 1

0H . The expression for   in this Theorem is not necessarily 

sharp. For example, as in the case of the Laplacian, the use of Poincare‘s 

inequality gives smaller values of   for bounded domains. 

 Theorem 9.3. Suppose that Ω is an open set in nR , and f ∈ H
−1

(Ω). Let 

L be a diff erential operator (4.16) with coefficients that satisfy (4.17), 

and let R  be a constant for which Theorem 9.2 holds. Then for every 

µ ≥γ there is a unique weak solution of the Dirichlet problem 

 1

00,   Lu f u H  

In the sense of Definition 8.19 

PROOF. For R , define    1 1

0 0:a H H R      by 
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(9.6)          2, , ,  
L

a u v a u v u v  

Where a is defined in (9.1). Then  1

0 u H  is weak solution of 

 Lu u f if and only if 

 , ,   a u f  for all  1

0 H  

From (9.5) 

   1 2 1 1
0 0 0

2 2,     
H L H H

a u v C u u u C u v  

So, a  is bounded on  1

0 H . From (9.4) 

   1 2
0

2 2

1 , ,   
H L

C u a u u u a u u  

Where    . Thus, by the Lax-Milgram theorem, for every 

 1 f H  there is a unique  1

0 u H such that  , ,  f a u  for 

all  1

0 v H , which proves the result. 

Although L∗ is not of exactly the same form as L, since it first derivative 

term is not in divergence form, the same proof of the existence of weak 

solutions for L applies to L∗ with a in (9.1) replaced by a∗ in (9.2). 

An elliptic operator L + µI of the type studied above is a bounded, 

invertible linear map from  1

0 H  onto  1 H  for sufficiently large 

R , so we may de-fine an inverse operator  
1

 K L I . If Ω is a 

bounded open set, then the Sobolev embedding theorem implies that

 1

0 H  is compactly embedded in  2 L , and therefore K is a compact 

operator on  2 L .  

The operator  
1

L I  is called the resolvent of L, so this property is 

sometimes expressed by saying that L has compact resolvent. As 

discussed in Example 4.14,  L I  may fail to be invertible at smaller 

values of µ, such that λ = −µ belongs to the spectrum σ(L) of L, and the 

resolvent is not defined as a bounded operator on L
2
(Ω) for λ∈ σ(L).  
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The compactness of the resolvent of elliptic operators on bounded open 

sets has several important consequences for the solvability of the elliptic 

PDE and the spectrum of the elliptic operator. Before describing some of 

these, we discuss the resolvent in more detail. 

 From Theorem 9.3, for µ ≥ γ we can define 

     
 2

12 2: , |



    

L
K L L K L I . 

We define the inverse K on  2 L , rather than  1 H , in which case 

its range is a subspace of  1

0 H . If the domain   is sufficiently smooth 

for elliptic regularity theory to apply, then  2 u H  if  2 f L , 

and the range of K is    2 1

0  H H ; for non-smooth domains, the 

range of K is more difficult to describe. 

If we consider L as an operator acting in  2 L , then the domain of L is 

D=ran K, and 

   2 2:    L D L L  

Is an unbounded linear operator with dense domain D. The operator L is 

closed, meaning that if  nu  is a sequence of functions in D such that 

nu u  and nLu f  in  2 L , then u D and Lu f . By using the 

resolvent, we can replace and analysis of the unbounded operator L by an 

analysis of the bounded operator K. 

 If  2 f L , then   2, ,
L

f v f v . It follows from the 

definition of weak solution of  Lu u f  that 

(9.7) Kf u  if and only if     2, , 
L

a u v f v  for all  1

0 v H  where 

a  is defined in (9.6). We also define the operator 

       2

1
* 2 2 * *: , |




    

L
K L L K L I , 

Meaning that 
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(9.8) 
* K f u if and only if     2

* , , 
L

a u v f v  for all  1

0 v H  

where       2

* *, , ,  
L

a u v a u v u v  and *a  is given in (9.2) 

THEOREM 9.4. If   2 K B L  is defined by (9.7), then the adjoint 

of K is *K defined by (9.8). If   is a bounded open set, then K is a 

compact operator. 

PROOF. If  2,  f g L  and 
*, Kf u K g v , then using (9.7) and 

(9.8), we get, 

             2 2 2 22

* *, , , , , , ,      
L L L LL

f K g f v a u v a u v g u u g Kf g

. 

Hence, *K  is the adjoint of K 

If Kf u , then (9.4) with     and (9.7) imply that 

    21 2 2 2 1
0 0

2

1 , ,   
LH L L L H

C u a u u f u f u f u . 

Hence 1 2
0


H L

Kf C f  where 
1

1
C

C
. It follows that K is compact if   

is bounded, since it maps bounded sets in 2L  into bounded sets in 

1

0H , which are pre compact in 2L  by the Sobolev embedding 

theorem. 

9.4 THE FREDHOLM ALTERNATIVE 
 

Consider the Dirichlet problem 

(9.9)     , 0   Lu f in u on  

Where   is a smooth, bounded open set, and 

   
, 1 1 

       
n n

i ij j i i

i j i

Lu a u bu cu . 

If 0 u v on  , Green‘s formula implies that 

   * ,
 

 Lu vdx u L v dx  
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Where the formal adjoint *L  of L is defined by 

 *

, 1 1 

       
n n

i ij j i i

i j i

L v a v b v cv  

It follows that if u is a smooth solution of (9.9) and v is a smooth 

solution of the homogeneous adjoint problem, 

* 0 , 0   L v in v on  

Then 

  * 0.
  

    fvdx Lu vdx uL vdx  

Thus, a necessary condition for (9.9) to be solvable is that f is orthogonal 

with respect to the L
2
(Ω)-inner product to every solution of the 

homogeneous adjoint problem. 

For bounded domains, we will use the compactness of the resolvent to 

prove that this condition is necessary and sufficient for the existence of a 

weak solution of (9.9) where f ∈ L
2
(Ω). Moreover, the solution is unique 

if and only if a solution exists for every f ∈ L
2
(Ω). 

This result is a consequence of the fact that if K is compact, then the 

operator I+σK is a Fredholm operator with index zero on L
2
(Ω) for any σ 

∈R, and therefore satisfies the Fredholm alternative. Thus, if K = (L + 

µI)
−1

 is compact, the inverse elliptic operator L−λI also satisfies the 

Fredholm alternative. 

THEOREM 9.5. Suppose that  is a bounded open set in nR  and L is a 

uniformly elliptic operator of the form (8.16) whose coefficients satisfy 

(8.17). Let L* be the adjoint operator (9.3) and R . Then one of the 

following two alternatives holds. 

(1) The only weak solution of the equation * 0 L v v  is v=0. For 

every  2 f L  there is a unique weak solution  1

0 u H  of 

the equation   Lu u f . In particular, the only solution of 

0 Lu u is u=0. 

2)  The equation * 0  L v v has a nonzero weak solution v. The 

solution spaces of 0 Lu u  and * 0 L v  are finite-
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dimensional and have the same dimension. For  2 f L , the 

equation   Lu u f  has a weak solution  1

0 u H if 

 , 0f v for every  1

0 v H  such that * 0 L v v , and if a 

solution exists it is not unique. 

PROOF. Since  
1

 K L I is a compact operator on  2 L , the 

Fredholm alternative holds for the equation 

(9.10)     2,   u Ku g u g L  

For any R . Let us consider the two alternatives separately. 

First, suppose that the only solution of * 0 v K v  is v=0, which 

implies that the only solution of  * 0  L v v  is v=0. Then the 

Fredholm alternative for I K implies that (9.10) has a unique solution 

 2 u L  for every  2 g L . In particular, for any ,g ran K  there 

exists a unique solution  2 u L , and the equation implies that 

u rankK . Hence, we any apply  L I  to (9.10), 

Taking       , we get part (1) of the Fredholm alternative for L. 

Second, suppose that * 0 v K v  has a finite-dimensional subspace of 

solutions  2 v L . It follows that 
*v ran K (clearly, 0   in this 

case) and 

 * 0  L v v . 

By the Fredholm alternative, the equation 0 u Ku  has a finite-

dimensional subspace of solutions of the same dimension, and hence so 

does 

  0  Lu u . 

Equation (9.10):  is solvable for  2 u L  given g ran K  if and only 

if  
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(9.12)    2, 0
L

v g  for all  2 v L  such that * 0 v K v , and then 

u ran K . It follows that the condition (9.12) with g Kf  is necessary 

and sufficient for the solvability of (9.11) given  2 f L . Since 

       2 2 22

* 1
, , , ,   

L L LL
v g v Kf K v f v f  

And * 0 v K v  if and only if  * 0,  L v v  we conclude that 

(9.11) is solvable for u if and only if  2 f L  satisfies 

  2, 0
L

v f  for all v ran K  such that  * 0  L v v . 

Taking   ,      we get alternative (2) for L. 

Elliptic operators on a Riemannian manifold may have nonzero 

Fredholm index. The Atiyah-Singer index theorem (1968) relates the 

Fredholm index of such operators with a topological index of the 

manifold. 

Check your progress 

1. Prove theorem 9.4 

-----------------------------------------------------------------------------------

-----------------------------------------------------------------------------------

----------------------------------------------------------------------------------- 

9.5 THE SPECTRUM OF A SELF-ADJOINT 

ELLIPTIC OPERATOR 
 

Suppose that L is a symmetric, uniformly elliptic operator of the form 

(9.13)     
, 1

    
n

i ij j

i j

Lu a u cu  

Where ij ija a  and  ,  ija c L . The associated symmetric bilinear 

form 

   1 1

0 0:a H H R     
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Is given by 

 
, 1

, .




 
    

 


n

ij i i

i j

a u v a u u cuv dx  

The resolvent  
1

 K L I is a compact self-adjoint operator on 

 2 L for sufficiently large  . Therefore its eigenvalues are real and its 

eigenfunctions provide an orthonormal basis of  2 L . Since L has the 

same eigenfunctions as K, we get the corresponding result for L. 

Theorem 9.6. The operator L has an increasing sequence of real 

eigenvalues of finite multiplicity 

1 2 3 ...... ....n          

Such that n  . There is an orthonormal basis  :n n R  of  2L   

consisting of eigenfunctions functions  1

0nH   such that  

n n nL     

Proof. If 0K   for any  2L  , then applying L I   to the 

equation we find that 0  , so 0, is not an eigenvalue of K. If K k   , 

for  2L   and 0k  , then ranK  and  

1
,L

k

 
   
 

 

So   is an eigenfunction of L with eigenvalue 1/ k   . From 

Garding‘s inequality (9.4) with u    and the fact that   2

2
,

L
a     , 

we get  

 1 2
0

2 2

1 .
H L

C       

It follows that    , so the eigenvalues of L are bounded from below, 

and at most a finite number are negative. The spectral theorem for the 

compact self adjoint operator K then implies the result. 
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The boundedness of the domain  is essential here, otherwise K need 

not be compact, and the spectrum of L need not consist only of 

eigenvalues. 

Example 9.7. 

 Suppose that nR   and L   . Let  
1

1K


  . Then, form 

Example 4.12    2 2: n nK L R L R . The range of k is  2 nH R . This 

operator is bounded but not compact. For example, if  n

cC R  is any 

nonzero function and  ja  is a sequence in nR  such that 
ja    as 

j  , then the sequence  j  defined by    j jx x a     is bounded 

in  2 nL R  but  jK  has no convergent subsequence. In this example, 

K has continuous spectrum  0,1   on  2 nL R  and no eigenvalues. 

Correspondingly,   has the purely continuous spectrum  0, . 

Finally, let us briefly consider the Fredholm alternative for a self-adjoint 

elliptic equatio from the perspective of this spectral theory. The equation 

 9.14 Lu u f   

May be solved by expansion with respect to the eigenfunctions of L. 

Suppose that  :n n R   is an orthonormal basis of  2L   such that 

n n nL    , where the eigenvalues n  are increasing and repeated 

according to their multiplicity. We get the following alternatives, where 

all series converge in  2L  : 

(1)  If n    for any n R , then (9.14) has the unique solution 

 

1

, n

n

n n

f
u






 

 
  

For every  2f L  ; 

(2)  If 
M    for some M R  and n M    for M n N  , then 

(9.14) has a solutions  1

0u H   if and only if  2f L   satisfies 
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 , 0 .nf for M n N     

In that case, the solutions are  

 ,

n

N
n

n n n

n Mn

f
u c

  


   

 
   

Where  ,......M NC C  arbitrary real constants. 

9.6 INTERIOR REGULARITY 
 

Roughly speaking, solutions of elliptic PDEs are as smooth as the data 

allows. For boundary value problems, it is convenient to consider the 

regularity of the solution in the interior of the domain and neat the 

boundary separately. We begin by studying the interior regularity of 

solutions. We follow closely the presentation in [9]. 

To motivate the regularity theory, consider the following simple a priori 

estimate for the Laplacian. Suppose that  n

cu C R . Then, integrating 

by parts twice, we get 

    2 2 2

, 1

n

ii jj

i j

u dx u u dx


      

  3

, 1

n

iij j

i j

u u dx


     

  2 2

, 1

n

ij ij

i j

u u dx


     

2
2 .D u dx   

Hence, if ,u f   then 
22

22

LL
D u f . 

Thus, we can control the 2L norm  of all second derivatives of u  by the 

2L norm  of the Laplacian of u . This estimate suggests that we should 

have 
2

locu H if 
2,f u L  as is in fact true. The above computation is, 

however, not justified for weak solutions that belong to 1H ; as far as we 
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know from the previous existence theory, such solutions may not even 

posses second- order weak derivatives.  

We will consider a PDE 

 

(9.15)     Lu f in   

Where   is an open set in  2,nR f L  , and L  is a uniformly elliptic 

of then form  

(9.16)      
, 1

n

i ij j

i j

Lu a u


    . 

It is straight forward to extend the proof of the regularity theorem to 

uniformly elliptic operators that contain lower-order terms [9]. 

A function  1u H   is a weak solution of (9.16) – (9.16) if   

(9.17)      , ,a u v f v  for all   1

0v H   

Where the bilinear form a is given by 

(9.18)     
, 1

, .
n

ij j

i j

a u v a u v dx



    

We do not impose any boundary condition on u, for example by 

requiring that  1

0u H  , so the interior regularity theorem applies to 

any weak solution of (9.15). 

Before stating the theorem, we illustrate the idea of the proof with a 

further a priori estimate. To obtain a local estimate for 2D u  on a 

subdomain '  , we introduce a cut-off function  CC   such that 

0 1    and 1   on ' . We take as a test function 

(9.19)       2

k kv u    . 

Note that v is given by a positive definite, symmetric operator acting on 

u of a similar form to L, which leads to the positivity of the resulting 

estimate for kD u . 
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Multiplying (9.15) by v and integrating over , we get    , ,Lu v f v . 

Two integrations by parts imply that 

    2

, 1

,
n

j ij i k k

i j

Lu v a u u dx



       

  
, 1

n

k ij i j k

i j

a u u dx


      

  2

, 1

n

ij i j j k

i j

a u u dx F


        

Where 

    2

, 1

n

k ij i j k

i j

F a u u



       

      2 j ij i k k ij i ka u a u u dx         
  . 

The term F is linear in the second derivatives of u. We use the uniform 

elliptically of L to get 

    
2 2

'

, 1

, ,
n

k ij i k j i

i j

D u dx a u u dx f v F 



            

and a Cauchy inequality with  to absorb the linear terms in second 

derivatives on the right-hand side into the quadratic terms on the left-

hand side. This results in an estimate of the form 

      2 2 1

2 2 2

k L L H
D u C f u

 
    

The proof of regularity is entirely analogous, with the derivatives in the 

test function (9.19) replaced by difference quotients (see Section 4.C). 

We obtain and  2 'L  -bound for the difference quotients 
h

lD u  that is 

uniform in h, which implies that  2 'u H   

THEOREM 9.8. Suppose that  is an open set in nR .Assume that  

 1

ija C  and  2f L  . If  1u H  is a weak solution of (9.15) – 

(9.15) – (9.16), then  2 'u H  for every '  . Furthermore, 
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(9.20)    
      2 22 '|| || || || || ||

L LH
u C f u

 
   

Where the constant C depends only on n, ',   and ija . 

PROOF. Choose  a cut -off function  cC  such that 0 1    and 

1   on ' . We use the compactly supported test function 

   2 1

0

h h

k kv D D u H      

In the definition (9.17) – (9.18) for weak solutions. (As in (9.19), v is 

given by a positive self-adjoint operator acting on u.) This complies that 

(9.21)       2 2

, 1

.
n

h h h h

ij i k j k k k

i j

a u D D u dx fD D u dx 

 


         

Performing a discrete integration by parts and using the product rule, we 

may write the left-hand side of (9.21) as 

(9.22) 

        2 2

, 1 , 1

n n
h h h h

ij i k j k k ij j k

i j i j

a u D D u dx D a D u dx


 

          

  2

, 1

,
n

h h h

ij k i k j

i j

a D u D u dx F




       

With     ,h

ij ij ka x a x he   where the error-term F is given by 

    2

, 1

n
h h

k ij i k j

i j

F D a u D u




     

(9.23)  

        2 .h h h h h

j ij k i k k ij i ka D u D u D a u D u dx      
   

Using the uniform ellipticity of L in (4.18), we estimate 

  
2

2 2

, 1

n
h h h h

k ij k i k j

i j

D Du dx a D u D u dx
 



       . 

Using (9.21) – (9.22) and this inequality, we find that 
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(9.24)    
2

2 2 .h h h

k k kD Du dx fD D u dx F

 
        

By the Cauchy-Schwartz inequality, 

       2 2

2 2|| || || ||h h h h

k k k kL L
fD D u dx f D D u 

 
   . 

Since supp    , Theorem 9.53 implies that for sufficiently small h,  

 
 

 
 2 2

2 2h h h

k k k k
L L

D D u D u

 
     

 
 

 2 2

2 2h h

k k k kL L
D u D u

 
       . 

   22
.h

k k LL
D u C Du


    

A similar estimate of F in (9.23) gives 

      2 22

2
.h

kL LL
F C Du D Du Du

 
    

Using these results in (9.24), we find that 

          2 2 22 2

2
h h

k kL L LL L
D Du C f D Du f Du

   
      

      2 22

2h

kL LL
Du D Du Du

 
    

By Cauchy‘s inequality with , we have  

       2 22 2

2 21

4

h h

k kL LL L
f D Du D Du f

  
   


 

       2 22 2

2
21

.
4

h h

k kL LL L
Du D Du D Du Du

  
   


 

Hence, choosing  so that 4C   , and using the result in (9.25) we get 

that  

      2 22

2 2 2
.

4

h

k L LL
D Du C f Du

 


    

Thus, since 1   on '  

(9.26)   
      2 22

2 2 2

'

h

k L LL
D Du c f Du
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Where the constant C depends on , ', ija  , but is independent of h, u, f.  

the Theorem 4.53 now implies that the weak second derivatives of u exist 

and belong to  2L  . Furthermore, the 2H norm  of u satisfies 

      2 2
1'

.
H L H

u C f u
  

   

Finally, we replace 
 1H

u


 in this estimate by 
 2L

u


. First, by the 

previous argument, if "    , then  

(9.27)          2 2 1 .
H L H

u C f u
   

   

Let  cC   be a cut-off function with 0 1    and 1   on  . 

Using the uniform ellipticity of L and taking
2v u   in(9.17) – (9.18), we 

get that 

22 2

, 1

n

ij i j

i j

Du dx a u u dx
 



        

2

, 1

2
n

ij i j

i j

fudx a u u dx
 



         

       2 2 2 2 .
L L L L

f u Cu Du
   

    

Cauchy‘s inequality with  then implies that  

And since       2 2 2

2 2 2

L L L
Du C f u

  
   , 

   2 2

2 2

L L
Du Du

 
  , the use of this result in (9.27) gives (9.20) 

If  2

locu H   and  2f L  , then the equation Lu f  relating the 

weak derivate of u and f holds pointwise a.e.; such solutions are often 

called strong solutions, to distinguish them form weak solutions, which 

may not possess weak second order derivatives, and classical solutions, 

which possess continuous second order derivatives. 

The repeated application of these estimates leads to higher interior 

regularity. 
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THEOREM 9.9. Suppose that  1k

ija C   abd  kf H  . If 

 1u H   is a weak solutions of (9.15) – (9.16), them  2 'ku H  

for every '  . Furthermore, 

      2 2k kH H L
u C f u   

   

Where the constant C depends only on , , ',n k    and .ija  

See [9] for a detailed proof. Note that if the above conditions hold with 

/ 2k n , then  f C   and  2u C  , so u is a classical solutions of 

the PDE Lu f . Furthermore, if f and ija  are smooth then so is the 

solution. 

COROLLARY 9.10. If ija ,  f C   and  1u H   is a weak 

solution of 

 (9.15) – (9.16), then  u C   

PROOF. If '  , then  'kf H   for evert k R , so by Theorem 

(9.9)  2 'k

locu H    for every k R , and by the Sobolev embedding 

theorem  'u C  . Since this holds for every open set '  , we 

have  u C  . 

9.7 BOUNDARY REGULARITY 
 

To study the regularity of solutions near the boundary, we localize the 

problem to a neighborhood of a boundary point by use of a partition of 

unity. 

We decompose the solution into a sum of functions that are compactly 

supported in the sets of a suitable open cover of the domain and estimate 

each function in the sum separately. 

Assuming, as in section 1.10, that the boundary is at least C1 we may 

‗flatten‘ the boundary in a neighborhood U by a diffeomorphism 

: U V   that maps U  to an upper half space 
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   1 nV B 0 y 0   . If 
1    and  x y , then by a change of 

variables (c.f. Theorem 1.44 and Proposition 3.21 the weak formulation 

(9.15) – (9.16) on U becomes 

, 1

 


 
 

n

ij
V V

i j i j

u v
a dy f v

y y
dy for all functions  1

0v H V , 

Where  1u H V . Here, , ,  u u o v v o  and 

, 1

det , det .


     


  
        


n

ji
ij pq

p q p q

a D a o o o f D f o
x x

 

The matrix ija satisfies the uniform ellipticity condition if pqa  does. To 

see this, we define     t

p D ,  

or 

1


 









n
i

p i

i px
 

Then, since D  and 
1  D D are invertible and bounded away from 

zero, we have for some constant C >0 that 

2 2

, 1 , 1

det det         
 

   
n n

ij i j pq p q

i j p q

a D a D C  

Thus, we obtain a problem of the same form as before after the change of 

variables. Note that we must require that the boundary is 2C  to ensure 

that ija is 1C . 

It is important to recognize that in changing variables for weak solutions, 

we need to verify the change of variables for the weak formulation 

directly and not just for the original PDE. A transformation that is valid 

for smooth solutions of a PDE is not always valid for weak solutions, 

which may lack sufficient smoothness to justify the transformation. 

We now state a boundary regularity theorem. Unlike the interior 

regularity theorem, we impose a boundary condition  1

0 u H  on the 

solution, and we require that the boundary of the domain is smooth. A 

solution of an elliptic PDE with smooth coefficients and smooth right-

hand side is smooth in the interior of its domain of definition, whatever 
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its behavior near the boundary; but we cannot expect to obtain 

smoothness up to the boundary without imposing a smooth boundary 

condition on the solution and requiring tha0t the boundary is smooth. 

THEOREM 9.11. Suppose that   is a bounded open set in nR  with 2C  

boundary. Assume that  1

ija C   and  2f L  . If  1

0u H   is a 

weak solution of  (9.15) – (9.16), then  2u H  , and 

      2 2 2|| || || || || ||
H L L

u C f u
  
   

where the constant C depends only on n, Ω and aij. 

PROOF. By use of a partition of unity and a flattening of the boundary, it 

is sufficient to prove the result for an upper half space Ω = {(x1,...,xn) : 

xn> 0} space and functions  

u,f : Ω → R  that are compactly supported in  1 0B  . Let 

 n

cC R  be a cut-off function such that 0 ≤ η ≤ 1 and η = 1 on B1 (0). 

We will estimate the tangential and normal difference quotients of Du 

separately. First consider a test function that depends on tangential 

differences, 

2h h

k kv D D u    for k=1,2,……,n-1 

Since the trace of u is zero on ∂Ω, the trace of v on ∂Ω is zero and, by 

Theorem 3.44,  1

0v H  . Thus we may use v in the definition of weak 

solution to get (9.21). Exactly the same argument as the one in the proof 

of Theorem 9.8 gives (9.26). It follows from Theorem 4.53 that the weak 

derivatives k iu  exist and satisfy 

(9.28)       2 2 2|| || || || || ||k L L L
Du C f u

  
   for k=1, 2……, n-1 

The only derivative that remains is the second-order normal derivative 

2

nu , which we can estimate from the equation. Using (9.15)–(9.16), we 

have for  cC   that 
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     nn n n ij i ja u dx a u dx f dx
  

             

Where ' denotes the sum over 1 ,i j n   with the term i j n   

omitted. Since  1

ija C   and iu  is weakly differentiable with respect 

to jx  unless i j n   we get, using Proposition 3.21, that 

     'nn n n j ij ia u dx a u f dx
 

             for every 

 cC  . 

It follows that  nn na u  is weakly differentiable with respect to nx , and 

From the uniform ellipticity condition (8.18) with ne  , we have 

nna   . Hence by Proposition 3.21, 

1
n nn n

nn

u a u
a

    

Is weakly differentiable with respect to nx  with derivative 

   2 21 1
nn n nn n n nn n

nn nn

u a u a u L
a a

 
         

 
 

Furthermore, using (9.28) we get an estimate of the same form for 

 2

2 2|| ||nn L
u


 , so that 

      2 2 2

2 2 2|| || || || || ||
L L L

D u C f u
  
   

The repeated application of these estimates leads to higher-order 

regularity. 

THEOREM 9.12. Suppose that   is a bounded open set in nR with 

2kC   boundary. Assume that  1k

ija C    and  kf H  . If 

 1

0u H   is a weak solution of (9.4) –(9.16), then  2ku H    and 

      2 2|| || || || || ||k kH H L
u C f u   
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Where the constant C depends only on n, k,   and ija . 

Sobolev embedding then yields the following result. 

COROLLARY 9.13, Suppose that that   is a bounded open set in nR  

with C  boundary. If  ,ija f C   and  1

0u H   is a weak 

solution of (9.15) – (9.16), then  u C 
 

Check your progress 

2. Explain about boundary regularity 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- 

9.8 SOME FURTHER PERSPECTIVES 
 

This book is to a large extent self-contained, with the restriction that the 

linear theory — Schauder estimates and Campanato theory — is not 

presented. The reader is expected to be familiar with functional-analytic 

tools, like the theory of monotone operators.
4 

The above results give an existence and L
2
-regularity theory for second-

order, uniformly elliptic PDEs in divergence form. This theory is based 

on the simple a priori energy estimate for 2|| ||
L

Du  that we obtain by 

multiplying the equation Lu = f by u, or some derivative of u, and 

integrating the result by parts. 

This theory is a fundamental one, but there is a bewildering variety of 

approaches to the existence and regularity of solutions of elliptic PDEs. 

In an attempt to put the above analysis in a broader context, we briefly 

list some of these approaches and other important results, without any 

claim to completeness.  

pL -theory: If 1 < p < ∞, there is a similar regularity result that solutions 

of Lu = f satisfy 2, pu W if 
pf L . The derivation is not as simple when 

2p  , however, and requires the use of more sophisticated tools from 

real analysis (such as the pL -theory of Caldero´n-Zygmundoperators).  
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Schauder theory: The Schauder theory provides H¨older-estimates 

similar to those derived in Section 2.7.2 for Laplace‘s equation, and a 

corresponding existence theory of solutions u 

, 0,of if andC Lu f f C L   2
has Holder continuous coefficients. 

General linear elliptic PDEs are treated by regarding them as 

perturbations of constant coefficient PDEs, an approach that works 

because there is no ‗loss of derivatives‘ in the estimates 

of the solution. The Holder estimates were originally obtained by the use 

of potential theory, but other ways to obtain them are now known; for 

example, by the use of Campanato spaces, which provide H¨older norms 

in terms of suitable integral norms that are easier to estimate directly. 

Perron’s method: Perron (1923) showed that solutions of the Dirichlet 

problem for Laplace‘s equation can be obtained as the infimum of 

superharmonic functions or the supremum of subharmonic functions, 

together with the use of barrier functions to prove that, under suitable 

assumptions on the boundary, the solution attains the prescribed 

boundary values. This method is based on maximum principle estimates.  

Boundary integral methods: By the use of Green‘s functions, one can 

often reduce a linear elliptic BVP to an integral equation on the 

boundary, 

and then use the theory of integral equations to study the existence and 

regularity of solutions. These methods also provide efficient numerical 

schemes because of the lower dimensionality of the boundary.  

Pseudo-differential operators: The Fourier transform provides an 

effective method for solving linear PDEs with constant coefficients. The 

theory of pseudo-differential and Fourier-integral operators is a powerful 

extension of this method that applies to general linear PDEs with variable 

coefficients, and elliptic PDEs in particular. It is, however, less well 

suited to the analysis of nonlinear PDEs (although there are nonlinear 

generlizations, such as the theory of para-differential operators).  

Variational methods: Many elliptic PDEs — especially those in 

divergence form — arise as Euler-Lagrange equations for variational 

principles. Direct methods in the calculus of variations provide a 

powerful and general way to analyze such PDEs, both linear and 

nonlinear. 
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Di Giorgi-Nash-Moser: Di Giorgi (1957), Nash (1958), and Moser 

(1960) showed that weak solutions of a second order elliptic PDE in 

divergence form with bounded L coefficients are Holder continuous

 0,C  . This was the key step in developing a regularity theory for 

minimizers of nonlinear variational principles with elliptic Euler-

Lagrange equations. Moser 

also obtained a Harnack inequality for weak solutions which is a crucial 

ingredient of the regularity theory. 

Fully nonlinear equations: Krylov and Safonov (1979) obtained a 

Harnack inequality for second order elliptic equations in nondivergence 

form. This allowed the development of a regularity theory for fully 

nonlinear elliptic equations (e.g. second-order equations for u that 

depend nonlinearly on 2D u ). Crandall and Lions (1983) introduced the 

notion of viscosity 

solutions which — despite the name — uses the maximum principle and 

is based on a comparison with appropriate sub and super solutions This 

theory applies to fully nonlinear elliptic PDEs, although it is mainly 

restricted to scalar equations. 

Degree theory: Topological methods based on the Leray-Schauder 

degree of a mapping on a Banach space can be used to prove existence of 

solutions of various nonlinear elliptic problems . These methods can 

provide global existence results for large solutions, but often do not give 

much detailed analytical information about the solutions.  

Heat flow methods: Parabolic PDEs, such as tu Lu f  , are closely 

connected with the associated elliptic PDEs for stationary solutions, such 

as Lu f . One may use this connection to obtain solutions of an elliptic 

PDE as the limit as t  of solutions of the associated parabolic PDE. 

For example, Hamilton (1981) introduced the Ricci flow on a manifold, 

in which the metric approaches a Ricci-flat metric as t  , as a means 

to understand the topological classification of smooth manifolds, and 

Perelman (2003) used this approach to prove the Poincare conjecture 

(that every simply connected, three-dimensional, compact manifold 

without boundary is homeomorphic to a three-dimensional sphere) and, 

more generally, the geometrization conjecture of Thurston. 
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9.9 LET US SUM UP 
 

In this unit we have discussed about The Lax-Milgran theorem, 

Compactness of the resolvent, The Fredholm alternative, The spectrum 

of a self-adjoint elliptic operator, Interior regularity, Boundary regularity, 

The only weak solution of the equation * 0 L v v  is v=0. For every 

 2 f L  there is a unique weak solution  1

0 u H  of the equation 

  Lu u f . In particular, the only solution of 0 Lu u is u=0. By the 

use of Green‘s functions, one can often reduce a linear elliptic BVP to an 

integral equation on the boundary. The Fourier transform provides an 

effective method for solving linear PDEs with constant coefficients. 

Many elliptic PDEs — especially those in divergence form — arise as 

Euler-Lagrange equations for variational principles. Direct methods in 

the calculus of variations provide a powerful and general way to analyze 

such PDEs, both linear and nonlinear. 

9.10 KEY WORDS 

1.Let H be Hilbert space with inner-product  .,. : H H R,  and let 

a : H H R,  be a bilinear form on H. Assume that there exist constants 

1 2C ,C 0 such that 

   
2

1 , , ,C u a u u a u v  for all , u v H  

2.The Lax-Milgram theorem, for every  1 f H  there is a unique 

 1

0 u H such that  , ,  f a u  for all  1

0 v H  

3.If   2 K B L  is defined by (9.7), then the adjoint of K is *K defined 

by (9.8). If   is a bounded open set, then K is a compact operator. 

4.L is a symmetric, uniformly elliptic operator of the form 

 
, 1

    
n

i ij j

i j

Lu a u cu  

5.For boundary value problems, it is convenient to consider the regularity 

of the solution in the interior of the domain and neat the boundary 

separately. 
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6.To study the regularity of solutions near the boundary, we localize the 

problem to a neighborhood of a boundary point by use of a partition of 

unity. 

9.11 QUESTIONS FOR REVIEW 
                                      

1. Discuss about The Lax-Milgram theorem 

2. Discuss about the spectrum of a self adjoint elliptic operator 

3. Discuss about Boundary regularity 
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9.13 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 9.2 

2. See section 9.4 

3.  See section 9.7 
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UNIT-10 THE HEAT AND 

SCHRODINGER EQUATIONS PART-1 
 

STRUTURE 

10.0 Objective 

10.1 Introduction 

10.2 Heat equation 

10.3 Initial value problem of heat equation 

10.4 Schwartz solutions 

10.5 Irreversibility 

10.6 Non uniqueness 

10.7 Generalized solutions 

10.8 The Schrodinger equation 

10.9 Semi groups and groups 

10.10 Non-autonomus equations 

10.11 Let us sum up 

10.12 Key words 

10.13 Questions for Review 

10.14 Suggestive readings and References 

10.15 Answers to check your progress 

10.0 OBJECTIVE 
 

In this unit we will learn and understand about Heat equation, 

Initial value problem of equation, Schwartz solutions, 

irreversibility, Non unique ness, Generalized solutions, The 

Schrodinger equations, Semi groups and groups, Non-autonomus 

equations. 

10.1 INTRODUCTION 
 

Study the solutions of the heat equation satisfy Laplace‘s equation, 

Initial value problem of heat equation, and the solution is a 

spherically symmetric Gaussian with spatial integral equal to one 

which spreads out and decays as t increases; its width is of the 

order t  and its height is of the order 1/ 2.t  Green‘s function, 
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Schwartz solutions.  

10.2 HEAT EQUATION 
 

The heat, or diffusion, equation is .tu u      (10.1)   

   

Section 9.A derives (10.1) as a model of heat flow. 

Steady solutions of the heat equation satisfy Laplace‘s equation.  

We have for smooth functions that  

 
 0

lim
r xB

r
u x f udx


    

 0
lim

r xB
r

n
f udS

r r 


  
 

 

 
 2

0

2
lim

r xB
r

n
f udS u x

r 


  
 

 

Thus, if u  is a solution of the heat equation, then the rate of 

change of  ,u x t  with respect to t  at a point x  is proportional to 

the difference between the value of u  at x  and the average of u 

over nearby spheres centered at x . The solution decreases in time 

if its value at a point is greater than the nearby mean and increases 

if its value is less than the nearby averages. The heat equation 

therefore describes the evolution of a function towards its mean. 

As t   solutions of the heat equation typically approach 

functions with the mean value property, which are solutions of 

Laplace‘s equation. 

We will also consider the Schrodinger equation 

tiu u   

This PDE is a dispersive wave equation, which describes a complex 

wave-field that oscillates with a frequency proportional to the 

difference between the value of the function and its nearby means.  

Check your progress 

1. Explain about heat equation. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- 
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10.3 THE INITIAL VALUE PROBLEM 

FOR THE HEAT EQUATION 
 

Consider the initial value problem for  ,u x t  where nx R  

10.2.  ty u     for nx R  and 0t   

   ,0u x f x   for nx R  

We will solve (10.2) explicitly for smooth initial data by use of the 

Fourier transform, following the presentation in [34]. Some of the 

main qualitative features illustrated by this solution are the smoothing 

effect of the  heat equation, the  irreversibility of its semiflow, and 

the need to impose a growth condition as x   in order to pick 

out a unique solution. 

 

10.4 SCHWARTZ SOLUTIONS:  

Assume first that the initial data : nf R R  is a smooth, rapidly 

decreasing, real-valued Schwartz function f S  . The solution 

we construct is also a Schwartz function of x  at later times 0t  , 

and we will regard it as a function of time with values in S .  This 

is analogous to    the geometrical interpretation of a first-order 

system of ODEs, in which the finite- dimensional phase space of 

the ODE is replaced by the infinite-dimensional function space S ; 

we then think of a solution of the heat equation as a parametrized 

curve  in the vector space S . A similar viewpoint is useful for 

many evolutionary PDEs, where the Schwartz space may be 

replaced other function spaces (for example, Sobolev spaces). 

By a convenient abuse of notation, we use the same symbol 

u  to denote the scalar-valued function  ,u x t , where 

 : 0, ,nu R R    and the associated vector- valued function 

 u t , where  : 0, .u S   We write the vector-valued function 

corresponding to the associated scalar-valued function as 
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   .,u t u t  

DEFINITION 10.1. Suppose  that  ,a b  is  an  open  interval  in  R . 

A function  : ,u a b S is continuous at  ,t a b  if 

   u t h u t   in S  as 0,h   

And differentiable at  ,t a b  if there exists a function v R  such that  

   u t h u t
v

h

 
  in S  as 0h  . 

The derivative v  of u  at t is denoted by  tu t , and if u  is 

differentiable for every  , ,t a b  then  : ,tu a b S  denotes the 

map  :t tu t u t  

In other words, u  is continuous at t if   

   
0
lim

h
u t S u t h


    

and u  is differentiable at t with derivative  tu t  if  

 
   

0
lim

h

u t h u t
u t S

h

 
   

We will refer to this derivative as a strong derivative if it is 

understood that we are considering -valued functions and we want 

to emphasize that the derivative is defined as the limit of 

difference quotients In S . 

We define spaces of differentiable Schwartz-valued functions in the 

natural way. For half-open or closed intervals, we make the obvious 

modifications to left or right limits at an endpoint. 

 

DEFINITION 10.2. The space   , ;C a b S  consists of the 

continuous functions  

 : , .u a b S  

The space  , ;kC a b S   consists of functions  : ,u a b S  that are k  -

times strongly differentiable in  ,a b  with continuous strong derivatives 

 , ;j

tu C a b S   for 0 ,j k   and  , ;C a b S
 is the space of 
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functions with continuous strong derivatives of all orders. 

Here we write  , ;C a b S  rather than   , ;C a b S  when we consider 

functions defined on the open interval  ,a b . The next proposition 

describes the relationship between the 1C   strong derivative and the 

pointwise time-derivative.   

PROPOSITION 10.3. Suppose That  , ;u C a b S  where 

   ., .u t u t  Then  1 , ;u C a b S  if and only if:  

1. The pointwise partial derivative  ,tu x t  exists for every 

nx R  and  , ;t a b  

2.  .,tu t S   for every  , ;t a b  

3. The map  .,tt u t  belongs  , ; .C a b S  

PROOF: The convergence of functions in S implies uniform 

pointwise convergence. Thus, if    .,u t u t  is strongly 

continuously differentiable, then the point- wise partial derivative 

 ,tu x t  exists for every nx R  and    ., ,t tu t u t S    so 

 , ;tu C a b S    

Conversely, if a pointwise partial derivative with the given properties 

exist, then for each nx R  

   
     1

, , 1
, , ,

t h

s t
t

u x t h u x t
u x t u x s u x t

h h

 
         ds. 

Since the integrand is a smooth rapidly decreasing function, it 

follows from the dominated convergence Theorem that we may 

differentiate under the integral sign with respect to x , to get 

   
   

, , 1
, ,

t h

s t
t

u x t h u x t
x x u x s u x t

h h

   
  

         
 

 ds, 

Hence, if . ,  is a schwartz seminorm , we have  

   
     

,
,

1
., ., .,

t h

t s t
t

u t h u t
u t u s u t ds

h h  
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,8

max ., ., ,s t
t t h

u s u t
   

     

And since  , ;tu C a b S   

   
 

0
,

lim ., 0.t
h

u t h u t
u t

h
 



 
    

If follows that  

   
 

0
lim ., ,t

h

u t h u t
S u t

h

  
   

 
 

So u  is strongly differentiable and  ,; .t tu u C a S    

We interpret the initial value problem (10.2) for the heat equation as 

follows: A solution is a function  : 0,u S   that is continuous for 

0t  , so that it makes sense to impose the initial condition at 0,t   and 

continuously differentiable for 0,t   so that it makes sense to impose the 

PDE point wise in t. That is, for 0,t  the strong derivative  tu t  is 

required to exist and equal  u t  where :S S   is the Laplactian 

operator.  

THEOREM 10.4. If ,f S  there is a unique solution  

(10.3)         10, ; 0, ;u C S C S     

Of (10.2) Furthermore,   0, ; .u C S   The spatial fourier 

transform of the solution is given by  

(10.4)        
2| |, ,t ku k t f k e    

and for 0t   the solution is given by  

(10.5)         , ,
nR

u x t x y t f y dy    

Where  

(10.6)     
 

2| | 4

/2

1
, .

4

x t

n
x t e

t

   

PROOF: Since the spatial Fourier  transform F is a continuous 

linear map on  S with continuous inverse, the time-derivative of u 

exists if and only if the time derivative of  u Fu  exists, and 

    .t t
F u Fu  
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Moreover,   0, ;u C S   if and only if     0, ; ,u C S and 

 0, ;ku C S   if and only if    0, ; .ku C S  

Taking the Fourier transform of (10.2) with respect to x, we find that 

 ,u x t  is a solution with the regularity in (10.3) if and only if   ,u k t  

satisfies  

(10.7)    
2

,tu k u     0 ,u f   

        10, ; 0, ; .u C S C S  

Equation (10.7) has the unique solution (10.4) 

To show this  in detail, suppose first that u  satisfies (10.7).  Then, 

from Propo- sition 10.3, the scalar-valued function   ,u k t  is 

pointwise-differentiable with respect to t in t > 0 and continuous in 

0t   for each fixed nk R . 

 Solving the ODE (10.7) with k as a parameter, we find that u  

must be given by (10.4). 

Conversely, we claim that the function defined by (10.4) is strongly 

differentiable with derivative 

(10.8)           
22

, .
t k

tu k t k f k e  

To prove this claim, note hat if 0, nN    are any multi-indices, the 

function  

          , ,k u k t h u k t  

Has the form  

     
 

    



  
   

2 2 2
| | 1

| |

0

, 1 ,
h k t k t h ki

i

i

a k t e e h h b k t e  

Where      ., , ., ,ia t b t S  so taking the supremum of this expression 

we see that  

   


   0u t h u t  as 0h  . 

Thus,   .,u t  is a continuous S-valued function in 0t   for every 

  .f S  By a similar argument, the pointwise partial derivative 

  .,tu t  in (10.8) is a continuous S-valued function.  
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Thus, Proposition (10.3) implies that u  is a strongly continuously 

differentiable function that satisfies (10.7).  

Hence     
1u F u  satisfies (10.3) and is a solution of (10.2). 

Moreover, using induction and proposition (10.3) we see in a similar way 

that   0, ; .u C S    

 Finally, from example 10.65 we have  

2 2

/2

1 | | | | /4

n

t k x tF e e
t

          
. 

Taking the inverse Fourier transform of (10.4) and using the 

convolution Theorem, Theorem 10.67, we get (10.5)–(10.6). 

The function  ,x t   in (10.6) is called the Green‘s function or 

fundamental solution of the heat equation in nR . It is a C  

function of  ,x t  in  0,nR   ,  and one can verify by direct 

computation that 

(10.9) t   if 0t   

Also, since  .,t  is a family of Gaussian mollifiers, we have 

 .,t    in 'S  as 0t  . 

Thus, we can interpret  ,x t  as the solution of the heat equation 

due to an initial point source located at 0x . The solution is a 

spherically symmetric Gaussian with spatial integral equal to one 

which spreads out and decays as t increases; its width is of the 

order t  and its height is of the order 1/ 2.t  

The solution at time t is given by convolution of the initial data 

with  ., . t  For any f S , this gives a smooth classical solution 

  0,  nu C R  of the heat equation which satisfies it pointwise 

in 0t . 

10.1.2. Smoothing. Equation (10.5) also gives solutions of (10.2) 

for initial data that is not smooth. To be specific, we suppose that 

, pf L  although one can also consider more general data that does 

not grow too rapidly at infinity. 
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Theorem10.5.  Suppose that 1  p  and  . p nf L R   Define 

 : 0,  nu R R  

By (10.5) where   is given in (10.6) then   0 0,  nu C R  and 

 tu u  in 0.t  If 1 ,  p  then  ., u t f  in pL  as 0 .t  

PROOF. The Green‘s function   in (10.6) satisfies (10.9), and 

 .,  qt L  for every 1 ,  q , together with all of its derivatives. 

The dominated convergence Theorem and Holder‘s inequality 

imply that if  pf L   and 0t , we can differentiate under the 

integral sign in (10.10) arbitrarily often with respect to  ,x t  and 

that all of these derivatives approach zero as .x  Thus, u  is a 

smooth,  decaying  solution of the heat equation in 0t . 

Moreover,    ,  t x x t   is a family of Gaussian mollifiers and 

therefore for 1  p  we have from Theorem 1.28 that 

 ., *  tu t f f   in pL  as 0 .t  

The heat equation therefore immediately smooths any initial data 

  p nf L R   to a function    0., . nu t C R From the Fourier 

perspective, the smoothing is a consequence of the very rapid 

damping of the high-wavenumber modes at a rate proportional to 

2| |t ke for wave numbers k  , which physically is caused by the 

diffusion of thermal energy from hot to cold parts of spatial 

oscillations. 

Once the solution becomes smooth in space it also becomes smooth 

in time. In general, however, the solution is not (right) 

differentiable with respect to t  at 0t , and for rough initial data it 

satisfies the initial condition in an pL -sense, but not necessarily 

pointwise. 

Check your progress 

2.Explain about Schwartz solutions 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------- 

3. Prove proposition 10.3 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- 

 

4. Prove theorem 10.4 

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------

-------------------------------------------------------------------------------- 

 

10.5 IRREVERSIBILITY 
 

For general ‗final‘  data ,f S  we  cannot solve the heat 

equation backward in time to obtain a solution  : ,0 , u T S  

however small we choose 0T . The same argument as the one 

in the proof of Theorem 10.4 implies that any such solution 

would be given by (10.4). If, for example, we take f S  such that   

 
21 | |k

f k e
    

 then the corresponding solutions 

 
2 21 | |

,
  


t k k

u k t e  

grows exponentially as k  for every  0t , and therefore  u t  

does not belong to S (or even 'S ). Physically, this means that the 

temperature distribution f cannot arise by thermal diffusion 

from any previous temperature distribution in S  (or 'S ). The 

heat equation does, however, have a backward uniqueness 

property, meaning that if f  arises from a previous temperature 

distribution, then (under appropriate assumptions) that 

distribution is unique [9]. 
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Equivalently, making the time-reversal ,t t  we see that 

Schwartz-valued solutions of the initial value problem for the 

backward heat equation 

   0, ,0   tu u t u x f x  

do not exist for every f S . Moreover, there is a loss of 

continuous dependence of the solution on the data. 

Example  10.6.  Consider  the  one-dimensional  heat  equation 

t xxu u  with initial data 

   sin n

nf x e nx  

and corresponding solution 

   
2

, sin . n n t

nu x t e nx e  

Then 0nf  uniformly together with of all its spatial derivatives 

as n , but sup  

 sup ,


n
x R

u x t  

as n  for any 0t .  Thus, the solution does not depend 

continuously on the initial data in  . n

bC R  Multiplying the initial 

data nf by 
2xe , we can get an example of the loss of continuous 

dependence in S .  

It is possible to obtain a well-posed initial value problem for the 

backward heat equation by restricting the initial data to a small 

enough space with a strong enough norm — for example, to a 

suitable Gevrey space of  C functions whose spatial derivatives 

decay at a sufficiently fast rate as their order tends to infinity. 

These restrictions, however, limit the size of derivatives of all 

orders, and they are too severe to be useful in applications. 

Nevertheless, the backward heat equation is of interest as an 

inverse problem, namely: Find the temperature distribution at a 

previous time that gives rise to an observed temperature 

distribution at the present time. There is a loss of continuous 

dependence in any reasonable function space for applications, 

because thermal diffusion damps out large, rapid variations in a 
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previous temperature distribution leading to an imperceptible 

effect on an observed distribution. Special methods — such as 

Tychonoff regularization — must be used to formulate such ill-

posed inverse problems and develop numerical schemes to solve 

them.  

 

10.6 NON UNIQUENESS 

A solution  ,u x t  of the initial value problem for the heat equation 

on nR  is not unique without the imposition of a suitable growth 

condition as x . In the above analysis, this was provided by 

the requirement that  ., u S , but the much weaker condition that 

u  grows more slowly than 
2

a x
Ce  as x  for some constants C , 

a  is sufficient to imply uniqueness [9]. 

ExAMPLE 10.7.  Consider, for simplicity, the one-dimensional 

heat equation 

.t xxu u  

As observed by Tychonoff , a formal power series expansion with 

respect to x  gives the solution 

 
   

 

2

0

,
2 !






n n

n

g t x
u x t

n
 

for some function  .g C R   We can construct a nonzero 

solution with zero initial data by choosing  g t  to be a nonzero 

C -function all of whose derivatives vanish at 0t  in such a way 

that this series converges uniformly for x   in compact subsets of 

R  and 0t  to a solution of the heat equation. This is the case, 

for example, if 

  2

1
exp .

 
  

 
g t

t
 

The resulting solution, however, grows very rapidly as .x  

A physical interpretation of this nonuniqueness it is that heat can 

diffuse from infinity into an unbounded region of initially zero 
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temperature if the solution grows sufficiently quickly. 

Mathematically, the nonuniqueness is a consequence of the the 

fact that the initial condition is imposed on a characteristic surface 

0t  of the heat equation, meaning that the heat equation does not 

determine the second- order normal (time) derivative ttu  on 0t  in 

terms of the second-order tangential (spatial) derivatives 

2, ,u Du D u . 

According to the Cauchy-Kowalewski Theorem [14], any non-

characteristic Cauchy problem with analytic initial data has a 

unique local analytic solution.  If t R  denotes the normal 

variable  and nx R  the transverse variable, then in solving the 

PDE by a power series expansion in t  we exchange one t -

derivative for one x -derivative and the convergence of the Taylor 

series in x  for the analytic initial data implies the convergence of 

the series for the solution in t . This existence and uniqueness fails 

for a characteristic initial value problem, such as the one for the 

heat equation. 

The Cauchy-Kowalewski Theorem is not as useful as its apparent 

generality sug- gests because it does not imply anything about the 

stability or existence of solutions under non-analytic perturbations, 

even arbitrarily smooth ones. For example, the Cauchy-Kowalewski 

Theorem is equally applicable to the initial value problem for the 

wave equation 

   , ,0 , tt xxu u u x f x  

which is well-posed in every Sobolev space  ,sH R  and the initial 

value problem for the Laplace equation 

   , ,0 , tt xxu u u x f x  

which is ill-posed in every Sobolev space  .sH R  

10.7 GENERALIZED SOLUTIONS 
 

In this section we  obtain  generalized  solutions  of  the  initial  value  

problem of the heat equation as a limit  of  the  smooth  solutions  
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constructed  above.  In order to do this, we require estimates on  the  

smooth solutions  which  ensure that the convergence of initial data in 

suitable norms implies the convergence of the corresponding 

solution. 

10.7.1. Estimates for the Heat equation. Solutions of the heat 

equation  satisfy two basic spatial estimates, one in 2L  and the L . 

The 2L  estimate follows from the Fourier representation, and the 

1L  estimate follows from the spatial representation. For 1 ,  p  

we let 

 
1/

n

p
p

lp R
f f dx   

denote the spatial pL -norm of a function ;f  also L
f denotes the 

maximum or essential supremum of f . 

Theorem  10.8.  Let    : 0, nu S R    be  the solution  of  

(10.2) constructed in Theorem 10.4 and 0t .  Then 

   
 

2 12 / 2

1
, .

4


 
nL LL L

u t f u t f
t

 

Proof:.By Parseval‘s inequality and (10.4), 

         
2

22 22 2

| |2 2 2 ,
n n nt k f

LL LL L
u t u t e f f  

 


    

Which gives the first inequality. From (10.5),  

     , sup , ,


 
  
 

 n
nx

u x t x t f y dy  

and from (5.6) 

 
 

/ 2

1
, .

4
 

n
x t

t
 

The second inequality then follows.  

Using the Riesz-Thorin Theorem, Theorem 10.72, it follows 

by interpolation be- tween    ', 2,2p p  and    ', ,1 p p   that 

for 2   p   

(10.10)     
 

 
'

1/ 2 1/

1
.

4


 pp n p LL
u t f

t
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This estimate is not particularly useful for the heat equation, 

because we can de- rive stronger parabolic estimates for 2 ,
L

Du but 

the analogous estimate for the Schrodinger equation is very useful. 

A generalization of the 2L -estimate holds in any Sobolev space 8H

of functions with s spatial 2L -derivatives (see Section 10.C for their 

definition).  Such  estimates  of 2L -norms of solutions or their 

derivative are typically referred to as energy es- timates, although the 

corresponding 2L -norms may not correspond to a physical 

Finally, here is the question to the answer posed above: Do you spell 

your name with a ―V‖. Herr Wagner? 

energy. In the case of the heat equation, the thermal energy 

(measured from a zero-point energy at 0u ) is proportional to the 

integral of u . 

THEOREM 10.9. Suppose that f S  and   0, ; u C S  is the 

solution of (10.2). then for any s R  and 0t  

  . ss HH
u t f  

Proof. Using (10.4) and Parseval‘s identity, and writing 

 
1/ 2

2
1 , k k  we find that 

     
2

2 2

| |2 2 .
s

s sn nt k s

H L L

u t k e f k f f H      

We can also derive this sH -estimate, together with an additional 

a space-time estimate for Du , directly from the equation without 

using the explicit solution. We will use this estimate later to 

construct solutions of a general parabolic PDE by the Galerkin 

method, so we derive it here directly. 

For 1  p   and 0,T  the pL -in-time- sH -in-space norm of a 

function   0, ;u C T S  is given by  

    

1/

0, ;

0

.
 

  
 
p s s

p
T

p

L T H H
u u t dt  

The maximum-in-time- sH -in-space norm of u is 

(10.11)         
 

0, ; 0,
max .


s sC T H Ht T
u u t  
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In particular,  if  
1/ 2

  I  is the spatial operator defined in (10.75), 

then  

    2

1/ 2

2

0, ;

0

,
 

  
 
 s n

T

s

L T H
u u x t dxdt . 

THEOREM  10.10.  Suppose that f S  and   0, ;u C T S  is the 

solution of (10.2.). Then for any s R  

  0. ;
,s sC T H H

u f     2 0. ;

1
.

2
s sL T H H

Du f  

PROOF. Let .  sv u  Then, since : s S S  is continuous and 

commutes with ,  

 , 0  tv v v g  

where   sg f . Multiplying this equation by v , integrating the 

result over nR , and using the divergence Theorem (justified by the 

continuous differentiability in time and the smoothness and decay 

in space of v ), we get 

221
.

2
  

d
v dx Dv dx

dt
 

Integrating this equation with respect to ,t  we obtain for nay 0T  that 

(10.12)       
22 2

0

1 1
.

2 2
   

T

v T dx Dv t dxdt g dx  

Thus,  

 
   

22 2 2

00,

1
max , ,

2
     

T

t T
v t dx g dx Dv t dxdt g dx  

And the result follows. 

10.2.2 sH -solutions. In this section we use the above estimates to 

obtain generalized solutions of the heat equation as a limit of 

smooth solutions (10.5). In defining generalized solutions, it is 

convenient to restrict attention to a finite, but arbitrary, time-

interval  0,T  where 0T . For ,s R  let   0, ; sC T H  denote the 

Banach space of continuous sH -valued functions  : 0,  Su T H  

equipped with the norm (10.11). 

Definition 10.11.  Suppose that 0,T s R   and  sf H .  A function 
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  0, ; su C T H  

is a generalized solution of (10.2) if there exists a sequence of 

Schwartz-solutions  : 0, nu T S  such that nu u  in   0, ; sC T H  

as n  

According to the next Theorem, there  is a unique generalized 

solution defined  on any time interval  0,T  and therefore on  0, . 

Theorem  10.12.  Suppose  that  0,T s R   and   .s nf H R .  

Then  there  is a unique  generalized  solution    0, ; su C T H   of  

(10.2).  The  solution  is  given  by (10.4). 

Proof. Since S  is dense in sH , there is a sequence of 

functions nf S  such that nf f  in .sH   Let   0, ;un C T S  

be the solution of (10.2) with initial data nf . Then, by linearity, 

n mu u  is the solution with initial data ,n mf f  and Theorem 10.9 

implies that 

 
   

0,

sup .


   ssn m n m HH
t T

u t u t f f  

Hence,  nu  is a Cauchy sequence in   0, ; sC T H and therefore 

there exists a generalized solution   0, ; su C T H  such that nu u  

as n . 

Suppose that ,  sf g H  and   , , 0, ; su v C T H  are generalized 

solutions with    0 , 0 . u f v g  i f    , 0, ;n nu v C T S  are 

approximate solutions with    0 , 0 n n n nu f u g , then 

                     
s s s sn n n nH H H H

u t v t u t u t u t v t v t v t  

                             ss sn n n nHH H
u t u t f g v t v t  

Taking the limit of this inequality as n , we find that 

    .   ss HH
u t v t f g  

In particular,  if f g  then u v , so a generalized solution is 

unique. 
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Finally, from (10.4) we have 

   
2| |, .t k

nnu k t e f k   

Taking  the  limit  of  this  expression  in    0, ;
s

C T H 
  as ,n  

where 
s

H
  is  the weighted 2L - space (10.74), we get the same 

expression for u .  

We may obtain additional regularity of generalized solutions in time 

by use of the equation; roughly speaking, we can trade two space-

derivatives for one time- derivative. 

Proposition  10.13.  Suppose  that  0,T s R    and   .s nf H R    

If   0, ; su C T H   is a generalized solution of (10.2), then 

  1 20, ;  su C T H   and 

 tu u  in   20, ; sC T H   

Proof. Since u  is a generalized solution, there is a sequence of 

smooth so- lutions   0, ;nu C T S such that nu u  in 

  0, ; sC T H  as n . These solutions satisfy . nt nu u  Since 

2:  s sH H  is bounded  and   nu  is  Cauchy in sH , we see that 

 ntu  is Cauchy in   20, ; sC T H . Hence there exists 

  20, ;  sv C T H  such that ntu v  in   20, ; sC T H . We claim that 

. tv u  For each n  and 0h  we have 

   
 

1  
 

t h
n n

ns
t

u t h u t
u s ds

h h
 in   0, ; ,C T S  

And  in the limit n , we get that  

   
 

1  
 

t h
n

t

u t h u t
v s ds

h h
  in   20, ; .sC T H  

Taking the limit as 0h of this equation we find that tu v and 

     1 20, ; 0, ; . s su C T H C T H  

Moreover, taking the limit of  nt nu u  we get  tu u  in 
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  20, ; .sC T H   

More generally, a similar argument shows that 

  20, ; . k s ku C T H  for any .k  In contrast with the case of 

ODEs, the time derivative of the solution lies  in a different space 

than the solution itself: u  takes values in sH , but tu  takes values 

in 2sH . This feature is typical for PDEs when — as is usually the 

case — one considers solutions that take values in Banach spaces 

whose norms depend on only finitely many derivatives. It did not 

arise for Schwartz-valued solutions, since differentiation is a 

continuous operation on S . 

The above proposition did not use any special properties of the 

heat equation. For 0t , solutions have greatly improved regularity 

as a result of the smoothing effect of the evolution 

ProPosiTioN 10.14.  If   0, ; su C T H is a generalized solution of 

(10.2), where  sf H  for some ,s R  then   0, ; u C T H  where 

H  is defined in (10.76). 

Proof.  , ,ss R f H    and  0t ,  then  (10.4)  implies  that  

  ru t H  for  every  ,r R   and  therefore    .u t H   It  follows  

from  the  equation that  0, ;  u C H . 

For general sH -initial data, however, we cannot expect any 

improved regularity in time at 0t beyond   20, ;  k s ku C T H . The 

H  spatial regularity stated here is not optimal; for example, one 

can prove [9] that the solution is a real-analytic function of x  for 

0t , although it is not necessarily a real-analytic function of t . 

Check your progress 

1. Prove theorem 10.9 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------- 

10.8 THE SCHRODINGER EQUATION  
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The initial value problem for the schrodinger equation is  

(10.13)                                         tiu u   for nx R  and ,t R  

   ,0u x f x  for ,nx R  

where : nu R R C   is a complex-valued function.  A solution of the 

Schrodinger equation is the amplitude function  of a quantum 

mechanical particle moving freely in nR . The function  
2

.,u t  is 

proportional to  the spatial probability density  of  the particle. 

More generally, a particle moving in a potential : nV R R  satisfies 

the schrodinger equation  

(10.14)   .tiu u V x u    

Unlike the free Schrödinger equation (10.13), this equation has 

variable coefficients and it cannot be solved explicitly for general 

potentials V . 

Formally,  the  Schrödinger  equation  (10.13)  is  obtained  by  the  

transformation t  it of the heat equation to ‗imaginary time.‘ 

The analytical properties of the  heat  and  Schrodinger  equations  

are,  however,  completely  different  and  it  is interesting to compare 

them.  

The Fourier solution of (10.13) is 

(10.15)     2| |
, .

it k f k
u k t e


  

The key difference from the heat equation is that these Fourier 

modes oscillate instead of decay in time, and higher wavenumber 

modes oscillate faster in time. As a result, there is no smoothing of 

the initial data (measuring smoothness in the 2L -scale  of  Sobolev  

spaces  sH )  and  we  can  solve  the  Schrodinger  equation  both 

forward and backward in time. 

Theorem  10.15.  For  any  f S  there  is  a  unique  solution  

 ;u C R S  of (5.13).  The spatial Fourier transform of the solution 

is given  by (5.15), and 

     , ,u x t x y t f y dy   

Where  
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, .
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i x t
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it

   

We get analogous pL  estimates for the schrodinger equation to the ones 

for the heat equation.  

THEOREM 10.16. Suppose that f S  and  ;u C S  is the solution 

of (10.13). then for all ,t  

   
 

2 12 / 2

1
, ,

4
nL LL L

u t f u t f
t


  

and for 2 ,p    

(10.16)   
 

 
'

1/ 2 1/

1
.

4
pp n p LL

u t f
t


  

Solutions of the Schr¨odinger equation do not satisfy a space-time 

estimate anal- ogous to the parabolic estimate (10.12) in which we ‗gain‘ 

a spatial derivative. In- stead, we get only that the 
sH -norm is 

conserved. Solutions do satisfy a weaker space-time estimate, called a 

Strichartz estimate, which we derive in Section 10.6.1. The conservation 

of the 
sH -norm follows from the Fourier representation (10.110), but 

let us prove it directly from the equation. 

THEOREM 10.17. Suppose that f S  and  ;u C R S  is the 

solution of (10.13). then for any s R  

  ss HH
u t f  for every .t R  

 PROOF. Let ,sv u   so that     2
.

sH L
u t v t Then  

tiv v   

and  0 .sv f   Multiplying this PDE by the conjugate v  and 

subtracting the complex conjugate of the result, we get  

  .tti vv vv v v v v      

We may rewrite this equation as  

 2
. 0.t v i vDv vDv    
   

If ,v u  this is the equation of conservation of probability where 
2

u  is 

the probability density and  i uDu uDu  is the probability flux. 
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Integrating the equation over nR  and using the spatial decay of ,v  we get  

2
0,

d
v dx

dt
  

And the result follows.  

We say that a function  ; su C R H  is a generalized solution of (10.13) 

if it is the limit of smooth schwartz-valued solutions uniformly on 

compact time intervals. The existence of such solutions follows form the 

preceding sH -estimates for smooth solutions.  

THEOREM 10.18. Suppose that s R  and  .s nf H R  Then there is 

a unique generalized solution  ; su C R H  of (10.13) given by  

   
2

.
it k

u k e f k
   

Moreover, for any ,k N  we have  2; .k s ku C R H   

Unlike the heat equation, there is no smoothing of the solution and there 

is no sH   regularity for 0t   beyond what is stated in this Theorem. 

 

10.9 SEMIGROUPS AND GROUPS 
 

The solution of an n n  linear first-order system of ODEs for   ,nu t R  

,tu Au  

May be written as  

   0tAu t e u       t   

Where :tA n ne R R  is the matrix exponential of tA. The finite-

dimensionality of the phase space nR is not crucial here. As we discuss 

next, similar results hold for any linear ODE in a Banach space generated 

by a bounded linear operator.  

10.4.1 Uniformly continuous groups. Suppose that X is a Banch space. 

We denote by  L X  the Banch space of bounded linear operators 

:A X X  equipped with the operator norm  

 
 \ 0

sup .
L x

u X

Au x
A

u x

  

We say that a sequence of bounded linear operators converges uniformly 
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if it converges with respect to the operator norm.  

 For  A L X  and  ,t R  we define the operator exponential 

by the series  

(10.17)  

 2 21 1
.... ......

2! !

tA ne I tA t A A
n

       

This operator is well-defined. Its properties are similar to those of the 

real-valued exponential function ate  for a R  and are proved in the 

same way. 

THEOREM 10.19. If  A L X  and t R , then the series in (10.17) 

converges uniformly in  .L X  Moreover, the function tAt e  belongs 

to   ;C R L X
 and for every ,s t R  

 
, .

s t AsA tA tA tAd
e e e e Ae

dt


   

Consider a linear homogeneous initial value problem 

(10.18)      1, 0 ;tu Au u f X u C R X     

The solution is given by the operator exponential.  

THEOREM 10.20. The unique solution  ,u C R X  of (10.18) is 

given by  

  .tAu t e f  

EXAMPLE 10.21. For 1 ,p    let    : P pA L R L R  be the 

bounded translation operator  

   1 .Af x f x   

The solution  ; pu C R L  of the differential-difference equation 

       , 1, , ,0tu x t u x t u x f x    

Is given by  

   
0

, .
!

n

n

t
u x t f x n

n





   

Example 10.22. Suppose that  1 na L R  and define the bounded 

convolution operator    2 2: n nA L R L R by * .Af a f  Consider the 
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IVP  

           2, , ,0 .
n

n

t
R

u x t a x y u y dy u x f x L R     

Taking the Fourier transform of this equation and using the convolution 

Theorem, we get  

           , 2 , , ,0 .
n

tu k t a k u k t u k f k     

The solution is        2
, .

n
a k t

u k t e f k
   

It follows that   

     , ,u x t g x y t f y dy  

Where the Fourier transform of  ,g x t  is given by  

 
 

   21
, .

2

na k t
g k t e






   

Since  1 ,na L R  the Riemann-Lebesgue lemma implies that 

 0 ,na C R  and therefore    ., n

bg t C R   for every .t N  Since 

convolution with g  corresponds to multiplication of the Fourier 

transform by a bounded multiplier, it defines a bounded linear amp on 

 2 .nL R  

The solution operators   tAT t e  of (10.18) form a uniformly continuous 

oneparameter group. Conversely, any uniformly contiunuous one-

parameter group of transformations on a Banch space is generated by a 

bounded linear operator.  

Definition 10.23. Let X be a Banach space. A one-parameter, uniformly 

continuous group on X is a family   :T t t R  of bounded linear 

operators   :T t X X  such that: 

 1)  0 ;T I  

 2)      T s T t T s t   for all , ;s t R  

 3)  T h I  uniformly in  L X  as 0h . 

THEOREM 10.24. If   :T t t R  is a uniformly continuous group on 

a Banach space X, then: 
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 1)   ; ;T C R L X  

 2)  0tA T  is a bounded linear operator on X; 

 3)   tAT t e  for every t R .  

Note that the differentiability (and, in fact, the analyticity) of  

 T t  with respect to t  is implied by its continuity and the group 

property      T s T t T s t  . This is analogous to what happens 

for the real exponential function: The only continuous functions 

:f R R  that satisfy the functional equation 

(10.19)        0 1,f f s f t f s t    for all 

,s t R  

are the exponential functions   atf t e  for a R , and these 

functions are analytic. 

Some regularity assumption on f  is required in order for (10.19) 

to imply that f  is an exponential function. If we drop the 

continuity assumption, then the function defined by  0 1f   and 

  0f t   for 0t   also satisfies (10.19). This function and the 

exponential functions are the only Lebesgue measurable solutions 

of (10.19). If we drop the measurability requirement, then we get 

many other solutions. 

ExAMPLE 10.25.  If 
gf e  where :g R R  satisfies 

       0 0, .g g s g t g s t     

then f  satisfied (10.19). The linear functions  g t at  satisfy this 

functional equation for any ,a R  but there are many other non-

measurable solutions. To ―construct‖ examples, consider R as a vector 

space over the field R of rational numbers, and let  :e R I    

denote an algebraic basis. Given any values  :c R I    define 

:g R R  such that  g e c   for each ,I   and if x x e   is the 

finite expansion of x R with respect to the basis, then 
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  .g x e x c      

10.4.2. Strongly continuous semigroups. We may consider the  heat 

equation and other linear evolution equations from a similar 

perspective to the Banach space ODEs discussed above. 

Significant differences arise, however, as a result of the fact that 

the Laplacian and other spatial differential operators are 

unbounded maps of a Banach space into itself. In particular, the 

solution operators associated with unbounded operators are 

strongly but not uniformly continuous functions of time, and we 

get solutions that are, in general, continuous but not continuously 

differentiable. Moreover, as in the case of the heat equation, we 

may only be able to solve the equation forward in time, which gives 

us a semigroup of solution operators instead of a group.  

Abstracting the notion of a family of solution operators with 

continuous trajectories forward in time, we are led to the 

following definition. 

Definition: 10.26.  Let X  be a Banach space.  A one-parameter, 

strongly continuous (or 0C ) semigroup on X  is a family 

  : 0T t t   of bounded linear operators   :T t X X such that 

 1)  0 ;T I  

 2)      T s T t T s t   for all , 0;s t   

 3)  T h f f  strongly in X  as 0h   for every 

.f X  

The semigroup is said to be a contraction semigroup if   1T t   for 

all 0t  , where . denotes the operator norm.  

The semigroup property (2) holds for the solution maps of any 

well-posed au- tonomous evolution equation: it says simply that 

we can solve for time s t  by solving for time t  and then for time 

s . Condition (3) means explicitly that 

  0
X

T t f f    as 0 .t   

If this  holds,  then  the  semigroup property (2) implies  that 
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   T t h f T t f   in X  as 0h for every 0t  ,  not only for 

0t   [8].  The term ‗contraction‘ in Definition 10.26 is not used 

in a strict sense, and the norm of the solution of a contraction 

semigroup is not required to be strictly decreasing in time; it may 

for example, remain constant. 

 The heat equation 

(10.20)     , ,0tu u u x f x    

is one of the primary motivating examples for the theory of 

semigroups. For definite- ness, we suppose that 
2f L , but we 

could also define a heat-equation semigroup on other Hilbert or 

Banach spaces, such as sH or pL  for 1 .p    

From Theorem 10.12 with 0,s   for every 
2f L  there is a unique 

generalized solution   2: 0,u L   of (10.20),  and therefore for each 

0t   we  may define a  bounded  linear  map    2 2:T t L L   by  

   : .T t f u t  The  operator  T t  is defined explicitly by 

(10.21)     0 , *tT I T t f f    for 0t   

       
2| | .t kT t f k e f k    

Where the * denotes spatial convolution with the Green‘s function 

   ,t x x t    given in  

(10.6) 

  We also use the notation  

  tT t e   

and interpret  T t  as the operator exponential of t . The 

semigroup property then becomes the usual exponential formula 

 
.

s t s te e e
     

Theorem  10.27.  The  solution  operators   : 0T t t   of  the  heat  

equation defined in (10.21) form a strongly continuous contraction 

semigroup on  2 .nL R  

Proof. This Theorem is a restatement of results that we have 
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already proved, but let us verify it explicitly. The semigroup 

property follows from the Fourier representation, since 

 
2 2 2

.
s t k s k t k

e e e
   

  

It also follows from the spatial representation, since 

* .s t s t     

The probabilistic interpretation of this identity is that the sum of 

independent Gaussian random variables is a Gaussian random 

variable, and the variance of the sum is the sum of the variances. 

Theorem 10.12, with 0,s   implies that the semigroup is strongly 

continuous since  t T t f belongs to   20, ;C L  for every 

2.f L  Finally, it is immediate from (10.21) and Parseval‘s 

Theorem that   1T t   for every 0t  , so the semigroup is a 

contraction semigroup. 

An alternative way to view this result is that the solution maps 

  2 2:T t S L S L    

constructed in Theorem 10.4 are defined on a dense subspace S  of 

2 ,L  and are bounded on 2L ,  so they extend to bounded linear maps 

  2 2:T t L L  which   form a strongly continuous semigroup. 

Although for every 
2f L  the trajectory  t T t f  is a 

continuous function from  0,  into 2L , it is not true that 

 t T t is a continuous map from  0,  into the space  2L L  of 

bounded linear maps on 2L  since  T t h  does not converge to 

 T t  as 0h  uniformly with respect to the operator norm. 

but for f L
2
 H

2
 the solution is not differentiable with respect to t in 

L
2
 

Proposition 10.13 implies a solution  t T t f belongs to 

  1 20, ;C L . If 
2 ,f H  but for 

2 2\f L H  the solution is not 

differentiable with respect to t  in 2L  at 0.t   For every 0t   however, 

we have from proposition 10.14 that the solution belongs to 
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 0, ; .C H   Thus, the the heat equation semiflow maps the 

entire phase space 2L  forward in time into a dense subspace H   of 

smooth functions. As a result of this smoothing, we cannot reverse 

the flow to obtain a map backward in time of 2L  into itself. 

10.4.3. Strongly continuous groups. Conservative wave equations 

do not smooth solutions in the same way as parabolic equations 

like the heat equation, and they typically define a group of 

solution maps both forward and backward in time. 

Definition  10.28.  Let X  be a Banach space.  A one-parameter, 

strongly continuous (or 0C ) group on X  is a family   :T t t R  of 

bounded linear operators   :T t X X  such that 

 (1)  0 ;T I  

 (2)      T s T t T s t   for all , ;s t R  

 (3)  T h f f  strongly in X  as 0h  for every .f X   

If X  is a Hilbert space and each  T t  is a unitary operator on X , 

then the group is said to be a unitary group. 

Thus   :T t t R is a strongly continuous group if and only if 

  : 0T t t   is a strongly continuous semigroup of invertible 

operators and    1T t T t  . 

Theorem  10.29.  Suppose that  s R .  The  solution  operators

  :T t t R of the Schrödinger equation (10.13) defined by 

(10.22)          
2

.
it k

T t f k e f k   

form  a strongly continuous, unitary group  on   .s nH R  

Unlike  the  heat  equation  semigroup,  the  Schrodinger  equation is  a  

dispersive wave  equation which does not smooth solutions.  The 

solution  maps    :T t t R  form a group of unitary operators on 2L

which  map  sH  onto  itself  (c.f.  Theo-  rem 10.17). A  trajectory 

 u t  belongs  to   1 2;C R L  if  and only  if   20u H  and 

 2;ku C R L  if  and only if   10 .ku H    If   2 20 \ ,u L H then 
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 2:u C R L but u is nowhere strongly differentiable in 2L  with 

respect to time.  Nevertheless,  the continuous non-differentiable 

trajectories remain close in 2L  to the differentiable trajectories. This 

dense intertwining of smooth trajectories and continuous, non-

differentiable trajectories in an infinite-dimensional phase space is 

not easy to imagine and has no analog for ODEs. 

The Schrodinger operators   itT t e   do not form a strongly 

continuous group on  p nL R  when 2.p   Suppose, for contradiction, 

that   : p pT t L L  is bounded for some 1 , 2p p      and 

 \ 0 .t R  Then since    * ,T t T t  duality  
' '

: p pT t L L  is 

bounded, and we can assume that 1 2p   without loss of generality. 

From Theorem 10.16,  
'

: p pT t L L  is bounded, and thus for every 

' 2p pf L L L    

     
'

'1 1 2 .p p p

p

L L L
f T t T t f C T t f C C f L      

This estimate is false if  2p  , so  T t  cannot be bounded on .pL  

10.4.4. Generators. Gi Generators. Given an operator A that 

generates a semigroup, we may define the semigroup   tAT t e  

as the collection of solution operators of the equation tu Au . 

Alternatively, given a semigroup, we may ask for an operator A 

that generates it. 

Definition  10.30.  Suppose that   : 0T t t    is  a strongly 

continuous semi- group on a Banach space X .  The generator A of 

the semigroup is the linear operator in X  with domain   ,D A  

 : ,A D A X X   

Defined as follows:  

 1)  f D A  if and only if the limit  

 
0

lim
h

T h f f

h 

 
 
 

 

Exists with respect to the strong (norm) topology of X;  
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 2) If   ,f D A  then  

 
0

lim
h

T h f f
Af

h 

 
  

 
. 

To des To describe which operators are generators of a semigroup, we 

recall some definitions and results from functional analysis. See [8] 

for further discussion and proofs of the results. 

Definition  10.31.  An  operator   :A D A X X   in  a  Banach 

space X  is closed  if  whenever   nf  is  a  sequence  of  points  in  

 D A  such  that  nf f   and nAf g  in X  as n  , then 

 f D A  and Af g . 

Equivalently, A is closed if its graph 

      , :G A f g X X f D A and Af g      

Is a closed subset of X X .  

Theorem 10.32.  If A  is the generator of a strongly continuous 

semigroup   T t on a Banach space X , then A  is closed and its 

domain  D A  is dense in X . 

Example 10.33.  If  T t  is the heat-equation semigroup on 2L , 

then the 2L -limit  

 
0

lim
h

T h f f

h 

 
 
 

 

exists if and only if 
2 ,f H  and then it is equal to f .  The 

generator of the  heat equation semigroup on 2L  is therefore the 

unbounded Laplacian operator with domain 2H , 

     2 2 2: .n n nH R L R L R    

If nf f  in 2L  and nf g   in 2L , then the continuity of 

distributional derivatives implies that f g   and elliptic 

regularity theory (or the explicit Fourier representation) implies 

that 
2f H . Thus, the Laplacian with domain  2 nH R  is a 

closed operator in  2 nL R . It is also self-adjoint. 
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Not every closed, densely defined operator generates a semigroup: 

the powers of its resolvent must satisfy suitable estimates. 

Definition 10.34.  Suppose that  :A D A X X   is a closed 

linear operator in a Banach space X  and  D A  is dense in X .  A 

complex number C is in the resolvent  set   A   of  A  if  

 :I A D A X X     is  one-to-one  and  onto. If   ,A  the 

inverse 

(10.23)    

    
1

, :R A I A X X 


    

is called the resolvent of A . 

The open mapping (or closed graph) Theorem implies that if A  is 

closed, then  the resolvent  ,R A  is a bounded linear operator on 

X  whenever it is  defined. This is because  ,f Af f Af   is  a 

one-to-one, onto map from the graph  G A  of A  to X , and  G A  is 

a  Banach space since it is a closed subset of the Banach  space 

X X . 

The resolvent of an operator A may be interpreted as the Laplace 

transform of the corresponding semigroup. Formally, if 

   
0

tu u t e dt


   

Is the Laplace transform of   ,u t  then taking the Laplace transform with 

respect to t  of the equation  

 0 ,tu Au u f   

We get  

.u f Au    

For   ,A   the solution of this equation is  

   , .u R A f   

This solution is the Laplace transform of the time-domain 

solution  

   u t T t f  
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With    , ,R A T t   or  

 
1

0
.t tAI A e e dt

     

This identity can be given a rigorous sense for the generators A of a 

semigroup, and it explains the connection between semigroups and 

resolvents. The Hille-Yoshida Theorem provides a necessary and 

sufficient condition on the resolvents for an operator to generate a 

strongly continuous semigroup. 

Theorem  10.35.  A  linear  operator   :A D A X X  in  a  

Banach  space  X  is the generator of a strongly continuous semigroup 

  ; 0T t t   on X  if and only if  there  exist  constants 1M    and 

a R  such  that  the  following  conditions  are satisfied: 

1) The domain  D A  is dense in X and A is closed;  

2) Every R  such that a   belongs to the resolvent set of A; 

3) If a   and ,n R  then  

(10.24)       
 

,
n

n

M
R A

a






 

Where the resolvent  ,R A  is defined in (10.23). 

In that case,  

(10.25)       atT t Me     for all 0t  . 

This Theorem is often not useful in practice because the condition on 

arbitrary powers of the resolvent is difficult to check. For  contraction 

semigroups, we  have the following simpler version. 

CoroLLAry 10.36.  A linear operator  :A D A X X   in a 

Banach space X  is the generator of a strongly continuous 

contraction semigroup   ; 0T t t  on X if and only if: 

 (1) the domain  D A  is dense in X  and A is closed; 

(2) every R  such that 0   belongs to the resolvent set of 

A ; 

3) if 0,   then 

(10.26)     
1

, .R A


  



Notes 

88 

This Theorem follows from the previous one since  

   
1

, , .
nn

n
R A R A 


   

The crucial condition here is that 1.M   we can always normalize 0a 

, since if A satisfies Theorem (10.35) with ,a   then A I  satisfies 

Theorem (10.35) with 0a  . Correspondingly, the substitution tu e v  

transforms the evolution equation tu Au  to   .tv A I v   

The Lumer-Phillips Theorem provides a more easily checked 

condition  (that A   is ‗ m -dissipative‘) for A  to generate a 

contraction semigroup. This condition often follows for PDEs from a 

suitable energy estimate. 

Definition  10.37.  A closed, densely defined operator 

 :A D A X X  in a Banach space X is dissipative if for every 

0   

(10.27)   f I A f      for all  .f D A  

The operator A is maximally dissipative, or m  dissipative for 

short, if it is dissipative and the range of I A   is equal to X  for some 

0  . 

The estimate (10.27) implies immediately that I A   is one-to-one. It 

also implies that the range of  :I A D A X X     is closed. To see 

this, suppose that ng  belongs to the range of I A   and ng g  in X. 

if   ,n ng I A f   then (10.27) implies that  nf  is Cauchy since  ng  

is Cauchy, and therefore nf f  for some .f X  Since A is closed, it 

follows that  f D A  and  I A f g   . Hence, g belongs to the 

range of .I A   

The range of I A   may be a proper closed subspace of X  for every 

0;   if, however, A is m  dissipative, so that I A   is onto X  for 

some 0  . Then one can prove that I A   is onto for every  0  , 

meaning that the resolvent set of A contains the positive real axis 

 0 .   The estimate (10.27) is then equivalent to (10.26). We therefore 

get the following result, called the Lumer-Phillips Theorem.  
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THEOREM 10.38. An operator  :A D A X X   ina Banch space X 

is the generator of a contraction semigroup on X if and only if: 

1) A is closed and densely defined; 

 2) A is m-dissipative. 

ExAMPLE  10.39.  Consider      2 2 2: n n nH R L R L R   . If 

2f H ,  then using the  integration-by-parts property of  the weak 

derivative on 2H  we have for 0   that 

   2

2 2

L
I f f f dx     

 
22 2 2f f f f dx      

   

 
22 2 2 .f Df Df f dx     

   

2 2 .f dx   

Hence,  

 2 2L L
f I f    

and   is dissipative. The range of I   is equal to 2L for any 

0  , as one can see by use of the Fourier transform (in fact, I 

is an isometry of 2H onto 2L ). Thus,  is m-dissipative. The 

Lumer-Phillips Theorem therefore implies that 2 2 2: H L L    

generates a strongly continuous semigroup on  2 nL R , as we   have 

seen explicitly by use of the Fourier transform. 

Thus, in order to show that an evolution equation 

 0tu Au u f   

in a Banach space X  generates a strongly continuous contraction 

semigroup, it is sufficient to check that  :A D A X X  is a 

closed, densely defined, dissipative operator and that for some 

0   the resolvent equation 

f Af g    

has a solution f X  for every g X . 

ExAMPLE 10.40.  The linearized Kuramoto-Sivashinsky (KS) 

equation is 
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2 .tu u u    

This equation models a system with long-wave instability, 

described by the back- ward heat-equation term ,u  and short 

wave stability, described by the forth- order diffusive term 2 .u  

The operator 

     4 2 2: ,n n nA H R L R L R     2Au u u    

generates a strongly continuous semigroup on  2 nL R , or  s nH R . 

One can verify this directly from the Fourier representation, 

 
 

 
2 4

,
t k k

tAe f k e f k


      

but let us check the hypotheses of the Lumer-Phillips Theorem 

instead. Note that 

(10.28)    
2 4 3

16
k k  for all 0k  . 

We claim that A A I    is m -dissipative for 3/16.   First, A  

is densely defined and closed, since if 
4

nf H  and ,n nf f A f g   

in 2L , the Fourier representation implies that 
4f H  and .A f g    

If 
4f H , then using (10.28), we have 

   
22 22 4

n
f A f k k f k dk         

 
2

nR
f k dk    

2

2
,

L
f  

Which means that A  is dissipative. Moreover, 4 2:I A H L    is 

one-to-one and onto for any 0,   since  I A f g    if and only if  

 
 

2 4
.

g k
f k

k k 



 
  

 

Thus, A  is m-dissipative, so it generates a contraction semigroup on 

2L .  It follows that A generates a semigroup on  2 nL R  such that  

 2

3 /16 ,tA t

L L
e e  

corresponding to 1M   and 3/16a   in (10.25). 
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Finally, we state Stone‘s Theorem, which gives an equivalence 

between self- adjoint operators acting in a Hilbert space and strongly 

continuous unitary groups. Before stating the Theorem, we give the 

definition of an unbounded self-adjoint operator. For definiteness, we 

consider complex Hilbert spaces. 

DEFINITON 10.41. Let H be a complex Hilbert space with inner-

product  

 .,. : .H H C   

An operator  :A D A H H   is self-adjoint if :  

 1) The domain  D A  is dense in ;H  

2)  x D A  if and only if there exists z H  such that 

   , ,x Ay z y  for every  ;y D A  

3)    , ,x Ay Ax y  for all  ,x y D A  

Condition (2) states that    *D A D A  where *A  is the 

Hilbert space adjoint of A , in which case ,z Ax  while (3) states 

that A  is symmetric on its domain. A precise characterization of 

the domain of a self-adjoint operator is essential; for differential 

operators acting in pL -spaces, the domain can often be described by 

the use of Sobolev spaces. The next result is Stone‘s Theorem (see 

e.g. [44] for a proof). 

Theorem  10.42.  An operator  :iA D iA H H   in a complex  

Hilbert  space H is the generator of a strongly continuous unitary 

group on H if and only if A is self-adjoint. 

ExAMPLE 10.43.  The generator of the Schrodinger group on 

 s nH R is the self- adjoint operator 

     : ,s n s ni D i H R H R        2 .s nD i H R   

ExAMPLE 10.44.  Consider the Klein-Gordon equation 

, ,t tu v v u    

Which has the form tw Aw  where  
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0
, .

0

u I
w A

v I

   
    

    
 

We let  

   1 2n nH H R L R   

With the inner product of    1 1 1 2 2 2, , ,w u v w u v   defined by 

         1 2 11 2 1 2 1 2 1 2 1 2 1 2, , , , , . .
H H L H

w w u u v v v v u u Du Du dx     

Then the operator  

 : ,A D A H H         2 1n nD A H R H R   

Is self -adjoint and generates a unitary group on .H  

We can instead take  

   2 1 ,n nH L R H R        1 2n nD A H R L R   

and get a unitary group on this larger space.  

10.4.5. Nonhomogeneous equations. The solution of a linear 

nonhomogeneous ODE 

(5.29)  , 0tu Au g u f    

may be expressed in terms of the solution operators of the  

homogeneous equation  by the variation of parameters, or Duhamel, 

formula. 

Theorem  5.45.  Suppose  that  :A X X is  a  bounded  linear  

operator  on  a Banach  space  X  and    tAT t e  is  the  associated  

uniformly  continuous  group.  If f X  and  ;g C R X  then the 

solution  1 ;u C R X  of (10.29) is given by 

(10.30.)          
0

.
t

u t T t f T t s g s ds    

This solution is continuously strongly differentiable and satisfies the 

ODE (10.29) pointwise in t for every t . We refer to such a 

solution as a classical solution. For a strongly continuous group with 

an unbounded generator, however, the Duhamel formula (10.30) need 

not define a function  u t  that is differentiable at any time t  even if 

 ;g C R X  
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ExAMPLE 10.46.  Let   :T t t R  be a strongly continuous group on 

a Banach space X with generator  : ,A D A X X   and suppose 

that there exists 0g X  such  that     0T t g D A  for  every .t  

For  example,  if   itT t e   is  the Schrodinger group on   2 nL R   and  

 2

0

ng H R , then     2

0

nT t g H R  for  every t R . Taking 

    0g t T t g  and 0f   in (10.30) and using the semigroup 

property, we get 

      0

0

t

u t T t s T s g       0 0
0

.
t

ds T t g ds tT t g   

This function is continuous but not differentiable with respect to t

, since  T t f is differentiable at 0t if and only if    0 .T t f D A  

It may happen that the function  u t  defined in (10.30) is is 

differentiable with respect to t  in a distributional sense and satisfies 

(10.29) pointwise almost everywhere in time. We therefore 

introduce two other notions of solution that are weaker than that of 

a classical solution. 

Definition :10.47.  Suppose  that  A  be  the  generator  of  a  strongly 

continuous semigroup   : 0 ,T t t f X  and   1 0, ; .g L T X   A 

function  : 0,u T X  is a strong solution of (10.29) on  0,T  if: 

1)  u  is absolutely continuous on  0,T  with distributional derivative 

 1 0, ; ;tu L T x  

 2)    u t D A  pointwise almost everywhere for  0, ;t T  

 3)      tu t Au t g t   pointwise almost everywhere for 

 0, ;t T  

 4)  0 .u f  

A function  : 0,u T X  is a mild solution of (10.29) on  0,T  if u  is 

given by (10.30) for  0, .t T  
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Every classical solution is a strong solution and every strong solution is a 

mild solution. As example (10.46) shows, however, a mild solution need 

not be a strong solution. 

The Duhamel formula provides a useful way to study semilinear 

evolution equations of the form   

(10.31)       tu Au g u   

where the linear operator A generates a semigroup on a Banach space X  

and 

 :g D F X X   

is a nonlinear function. For semilinear PDEs,  g u  typically depends on 

u  but none of its spatial derivatives and then (10.31) consists of a linear 

PDE perturbed by a zeroth-order nonlinear term. 

If   T t  is the semigroup generated by A , we may replace (10.31) by 

an integral 

equation for  : 0,u T X  

(10.32)            
0

0 .
t

u t T t u T t s g u s ds    

We then try to show that solutions of this integral equation exist. If these 

solutions have sufficient regularity, then they also satisfy (10.31). 

In the standard Picard approach to ODEs, we would write (10.31) as 

(10.33)            
0

0 .
t

u t u Au s g u s ds      

The advantage of (10.32) over (10.33) is that we have replaced the 

unbounded operator A by the bounded solution operators   .T t  

Moreover, since  T t s  acts on   g u s  it is possible for the 

regularizing properties of the linear operators T to compensate for the 

destabilizing effects of the nonlinearity F . For example, in Section 10.5 

we study a semilinear heat equation, and in Section 10.6 to prove the 

existence of solutions of a nonlinear Schrodinger equation. 

 

10.10 NON-AUTONOMOUS EQUATIONS 
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The semigroup property      T s T t T s t   holds for autonomous 

evolution equations that do not depend explicitly on time. One can also 

consider time-dependent linear evolution equations in a Banach space X  

of the form  

 tu A t u   

where     : .A t D A t X X   The solution operators  ;T t s  from 

time s to time t  of a well-posed nonautonomous equation depend 

separately on the initial and final times, not just on the time difference; 

they satisfy 

     , ; ;T t s T s r T t r      for   .r s t   

The time-dependence of A makes such equations more difficult to 

analyze fromthe semigroup viewpoint than autonomous equations. First, 

since the domain of  A t  depends in general on t, one must understand 

how these domains are related and for what times a solution belongs to 

the domain. Second, the operators  A s ,  A t  may not commute for 

s t , meaning that one must order them correctly with respect to time 

when constructing solution operators  ;T t s . 

Similar issues arise in using semigroup theory to study quasi-linear 

evolution 

equations of the form  

 tu A u u  

in which, for example,  A u  is a differential operator acting on u  whose 

coefficients depend on u  (see e.g. [44] for further discussion). Thus, 

while semigroup theory is an effective approach to the analysis of 

autonomous semilinear problems, its application to nonautonomous or 

quasilinear problems often leads to considerable technical difficulties. 

10.11 LET US SUM UP 
 

In this unit we have discussed about Heat equation, Schwartz solution, 

Irreversibility, Generalized solutions, The Schrodinger equation, Semi 

groups and groups, Non-autonoums equations. The heat, or diffusion, 



Notes 

96 

equation is .tu u     Steady solutions of the heat equation satisfy 

Laplace‘s equation. Suppose That  , ;u C a b S  where 

   ., .u t u t  Then  1 , ;u C a b S  if and only if:  

1. The pointwise partial derivative  ,tu x t  exists for every nx R  

and  , ;t a b  

2.  .,tu t S   for every  , ;t a b  

3. The map  .,tt u t  belongs  , ; .C a b S   

A solution  ,u x t  of the initial value problem for the heat equation 

on nR  is not unique without the imposition of a suitable growth 

condition as x . 

10.12 KEY WORDS 
 

1. The heat, or diffusion, equation is .tu u      

2. Solutions of the heat equation satisfy Laplace‘s equation.  

3. Schrodinger equation tiu u 
 

4. PDE is a dispersive wave equation, which describes a complex 

wave-field that oscillates with a frequency proportional to the 

difference between the value of the function and its nearby means.  

5.Suppose That  , ;u C a b S  where    ., .u t u t  Then

 1 , ;u C a b S  if and only if:  

4. The pointwise partial derivative  ,tu x t  exists for every nx R  

and  , ;t a b  

5.  .,tu t S   for every  , ;t a b  

3. The map  .,tt u t  belongs  , ; .C a b S  

 6.   An operator  :iA D iA H H   in a complex  Hilbert  space H 

is the generator of a strongly continuous unitary group on H if and 

only if A is self-adjoint. 
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10.13 QUESTIONS FOR REVIEW 
 

1. Discuss about Heat equation and Laplace equation 

2. Discuss about Schwartz solutions 

3. Discuss about the Schrodinger equation 

4. Discuss about Semi groups and groups 

5. Discuss about Non-autonoums equations 
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10.15 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See Section 10.2  

2. See Section 10.4  

3. See Section 10.4  

4. See Section 10.4 

5. See Section 10.7 
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UNIT-11 THE HEAT AND 

SCHRODINGER EQUATIONS PART-2 
 

STRUTURE 
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 11.2.1 Note 

 11.2.2 Mild solutions 

 11.2.3 Existence 

11.3 The non linear Schrodinger equation 

 11.3.1 Strichartz estimates 
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2
 solutions 

11.4 The Schwartzspace 

 11.4.1 Tempered distributions 

11.5 The Fourier transform  

 11.5.1 The Fourier transform S 

 11.5.2 The Fourier transform S
1 

 11.5.3 The Fourier transform L
1 

 11.5.4 The Fourier transform L
2 

 11.5.5 The Fourier transform L
P 

11.6 The Sobolev spaces 

11.7 Fractional Integrals 

11.8 Let us sum up 

11.9 Key words 

11.10 Questions for review 

11.11 Suggestive readings and references 

11.12 Answers to check your progress 

11.0 OBJECTIVE 
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In this unit we will learn about A semi linear equation, The non linear 

Schrodinger equations, Strichartz estimates, Local L
2
-Solutions, The 

fourier transforms, The Sobolev spaces and Fractional integrals. 

11.1 INTRODUCTION 
 

In this unit we will dicsuss about negative Laplacian operator, The 

Schwartz space and The fourier transforms on S,The fourier transforms 

on S
1
, The fourier transforms on L

1
, The fourier transforms on L

2
,The 

fourier transforms on L
p
. 

11.2 A SEMI LINEAR HEAT EQUATION 
 

Consider the following initial value problem for  : 0, :nu R T R   

(11.34)      , ,0m

tu u u u u x g x        

where , R    and m R  are parameters. This PDE is a scalar, 

semilinear reaction diffusion equation. The solution 0u   is linearly 

stable when 0   and linearly unstable when 0  . The nonlinear 

reaction term is potentially stabilizing if 0   and m is odd or m  is 

even and solutions are nonnegative (they remain nonegative by the 

maximum principle). For example, if 3m   and 0  , then the spatially-

independent reaction ODE 
3

tu u u    has a supercritical pitchfork 

bifurcation at 0u  as   passes through 0. Thus, (11.34) provides a 

model equation for the study of bifurcation and loss of stability of 

equilbria in PDEs. 

We consider (11.34) on Rn since this allows us to apply the results 

obtained earlier in the Chapter for the heat equation on nR . In some 

respects, the behavior this IBVP on a bounded domain is simpler to 

analyze. The negative Laplacian on nR does not have a compact resolvent 

and has a purely continuous spectrum  0, . By contrast, negative 

Laplacian on a bounded domain, with say homogeneous Dirichlet 

boundary conditions, has compact resolvent and a discrete set of 

eigenvalues 1 2 3 ......      As a result, only finitely many modes 
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become unstable as   increases, and the long time dynamics of (11.34) is 

essentially finite-dimensional in nature. 

Equations of the form 

 tu u f u    

on a bounded one-dimensional domain were studied by Chafee and 

Infante (1974), so this equation is sometimes called the Chafee-Infante 

equation. We consider here the special case with 

(11.35)         mf u u u    

so that we can focus on the essential ideas. We do not attempt to obtain 

an optimal result; our aim is simply to illustrate how one can use 

semigroup theory to prove the existence of solutions of semilinear 

parabolic equations such as (11.34). Moreover, semigroup theory is not 

the only possible approach to such problems. For example, one can also 

use a Galerkin method. 

11.2.1. Note 
 

We will use the linear heat equation semigroup to reformulate (11.34) as 

a nonlinear integral equation in an appropriate function space and apply a 

contraction mapping argument. 

To motivate the following analysis, we proceed formally at first. Suppose 

that A    generates a semigroup tAe  on some space X , and let F  be 

the nonlinear operator     ,F u f u  meaning that F  is composition 

with f  regarded as an operator on functions. Then (11.34) maybe 

written as the abstract evolution equation 

   , 0 .tu Au F u u g     

Using Duhamel‘s formula, we get 

      
0

.
t t s AtAu t e g e F u s ds

     

We use this integral equation to define mild solutions of the equation. 

We want to formulate the integral equation as a fixed point problem 

 u u   on a space of Y -valued functions  : 0, .u T Y  There are 

many ways to achieve this. In the framework we use here, we choose 

spaces Y X  such that: (a) :F Y X  is locally Lipschitz continuous; 
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(b) :tAe X Y    for 0t    with integrable operator norm as 0t  . 

This allows the smoothing of the semigroup  to compensate for a loss of 

regularity in the nonlinearity. 

As we will show, one appropriate choice in 1 3n   space dimensions is 

 2 nX L R  and  2 nY H R  for / 4 1.n    Here  2 nH R  is the 2L

-Sobolev space of fractional order 2 defined in Section 11.C. We write 

the order of the Sobolev space as 2  because    2 nH R D A   is the 

domain of the  th-power of the generator of the semigroup. 

11.2.2. Mild solutions 
 

Let A  denote the negative Laplacian operator in 2L ,  

(11.36)  

 

         2 2 2: , , .n n nA D A L R L R A D A H R      

We define A as an operator acting in 2L  because we can study it 

explicitly by use of the Fourier transform. 

As discussed in Section 11.4.2, A  is a closed, densely defined positive 

operator, and A  is the generator of a strongly continuous contraction 

semigroup 

 : 0tAe t   

on  2 .nL R  The Fourier representation of the semigroup operators is 

(11.37)  

         
22 2 | |: , .tA n n tA t ke L R L R e h k e h k      

If 0t    we have for any 0   that 

   2 2: .tA n ne L R H R   

This property expresses the instantaneous smoothing of solutions of the 

heat equation c.f. Proposition 11.14. 

We define the nonlinear operator 

(11.38)   

           2 2: , .n n mF H R L R F h x h x h x      
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In order to ensure that F takes values in 2L and has good continuity 

properties, we assume that / 4.n   The Sobolev embedding theorem 

(Theorem 11.79) implies that    2

0 .n nH R C R   Hence, if 
2 ,h H  , 

then 2

0 ,h L C   so ph L  for  every 2 p   , and   2

0.F h L C   

We then define mild 2H  -valued solutions of (11.34) as follows. 

DEFINITION 11.48. Suppose that 0, / 4,T n   and  2 .ng H R  

A mild 2H  -valued solution of (11.34) on  0,T is a function 

    20, ; nu C T H R  

such that 

(11.39)          
t t s AtA

o
u t e g e F u s ds

      

 for every 0 ,t T   

where tAe is given by (11.37), and F  is given by (11.38). 

11.3.3. Existence.  
In order to prove a local existence result, we choose   large enough that 

the nonlinear term is well-behaved by Sobolev embedding, but small 

enough that the norm of the semigroup maps from 2L   into 2H  is 

integrable as 0 .t   As we will see, this is the case if / 4 1,n   so we 

restrict attention to 1 3n   space dimensions. 

THEOREM 11.49. Suppose that 1 3n   and / 4 1.n    Then there 

exists 0T  , depending only on 
2, , ,n g H   and the coefficients of f , 

such that (11.34) has a unique mild solution   20, ;u C T H   in the 

sense of Definition 11.48. 

PROOF. We write (11.39) as 

     ,u u   

(11.40)        2 2: 0, ; 0, ; ,C T H C T H    

          
0

.
t t s AtAu t e g e F u s ds

      

We will show that   defined in (11.40) is a contraction mapping on a 

suitable ball in   20, ; .C T H   We do this in a series of Lemmas. The 
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first Lemma is an estimate  of the norm of the semigroup operators on 

the domain of a fractional power of the generator. 

LEMMA 11.50. Let tAe  be the semigroup operator defined in (11.37) 

and 0.  If t > 0, then 

   2 2:tA n ne L R H R   

and there is a constant  ,C C n  such that 

 2 2,
.

t
tA

L L H

Ce
e

t
 

   

PROOF. Suppose that  2 .nh L R  Using the Fourier representation 

(11.37) of tAe as multiplication by 
2| |t ke
and the definition of the 2H  -

norm, we get that 

     
2

2

2 22 2 2
2 1

n

n t ktA

H
e h k e h k dk






    

     
22 22 2

2 sup 1 .
n

n

n t k

k

k e h k dk







 
 

  
  

Hence, by Parseval‘s theorem,  

22

tA

LH
e h M h



   

Where  

   
2

1/ 2
2

2/ 2 2
2 sup 1 .

n

n t k

k

M k e







 
 

  
 

Writing 
2

1 ,k x   we have  

 
/ 2

1

2 sup .
t

n t tx

x

Ce
M e x e

t




 



     

And the result follows.  

Next, we show that   is a locally Lipschitz continuous map on the space 

    20, ; .nC T H R  

LEMMA 11.51. Suppose that / 4.n    Let   be the map defined in 

(11.40) where F  is given by (11.38), A is given by (11.36) and 

 2 .ng H R  Then 

(11.41)      : 

         2 20, ; 0, ;n nC T H R C T H R   
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and there exists a constant  , ,C C m n  such that 

      
  20, ;C T H

u v


   

  

 
         2 2 2

1 11

0, ; 0, ; 0, ;
1

m m

C T H C T H C T H
CT u v u v  

       

for every   2, 0, ; .u v C T H   

ROOF. We write   in (11.40) as 

             
0

, .
t t s AtAu t e g u t u t e F u s ds

        

Since 
2g H   and  : 0tAe t  is a strongly continuous semigroup on 

2H  , the map 
tAt e g

 belongs to   20, ; .C T H   Thus, we only need 

to prove the result for  .  

The fact that     20, ;u C T H     if   20, ;u C T H  follows from 

the Lipschitz continuity of   and a density argument. Thus, we only 

need to prove the Lipschitz estimate. 

If   2, 0, ;u v C T H  , then using Lemma 11.50 we find that 

     
 

     2 20

t s A
t

H L

e
u t u t C F u s F u s ds

t s
 

 

   


  

      2 00

1
sup .

t

Ls T

C F u s F u s ds
t s


 

 


  

Evaluating the s-integral, with 1,   and taking the supremum of the 

result over 0 ,t T   we get 

(11.42)   

    
 

   
 2 2

1

0, ; 0, ;
.

L T H L T H
u v CT F u F v

  

     

From (11.35), if 2

0,g h C H    we have 

    22 2

m m

LL L
F g G h g h g h       

And 

     22

1 1
.

m mm m

L L LL
g h C g h g h 

 
     

Hence, using the Sobolev inequality 2L H
g C g    for / 4n  and the 

fact that 2 2 ,
L H

g g  we get that  
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     2 22

1 1
1 ,

m m

L H HL
F g F h C g h g h  

 
      

which means that 2 2:F H L   is locally Lipschitz continuous. The use 

of this result in (11.42) proves the Lemma. 

Actually, under the assumptions we make here, 2 2:F H H  is locally 

Lipschitz continuousas a map from 2H  into itself, and we don‘t need to 

use the smoothing properties of the heat equation semigroup to obtain a 

fixed point problem in   20, ;C T H  , so perhaps this wasn‘t the best 

example to choose! For stronger nonlinearities, however, it would be 

necessary to use the smoothing. 

The existence theorem now follows by a standard contraction mapping 

argument. If 2 ,
H

g R   then  

2

tA

H
e R



   for every 0 t T   

since  tAe  is a contraction semigroup on 2H  . Therefore, if we choose 

      2

2

0, ;
0, ; : 2

C T H
E u C T H u R

   

we see from Lemma 11.51 that : E E   if we choose 0T   such that 

 1 11 2 mCT R R     

Where 0 1.   Moreover, in that case  

   
     22 0, ;0, ; C T HC T H

u v u v 
       for every , .u v E  

The contraction mapping theorem then implies the existence of a unique 

solution .u E  

This result can be extended and improved in many directions. In 

particular, if A is the negative Laplacian acting in  .p nL R  

     2,: , .p n p n p nA W R L R L R A     

then one can prove that A  is the generator of a strongly continuous 

semigroup on pL  for every 1 .p    Moreover, we can define 

fractional powers of A  

     : .p n p nA D A L R L R     

If we choose 2 p n  and / 2 1,n p   then Sobolev embedding implies 

that   0D A C   and the same argument as the one above applies. This 
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gives the existence of local mild solutions with values in  D A  in any 

number of space dimensions. The proof of the necessary estimates and 

embedding theorems is more involved that the proofs above if 2,p 

since we cannot use the Fourier transform 

to obtain out explicit solutions. 

More generally, this local existence proof extends to evolution equations 

of the form ([41], §111.1) 

  ,tu Au F u   

where we look for mild solutions   0, ;u C T X  taking values in a 

Banach space 

X and there is a second Banach spaces Y such that: 

(1) :tAe X X   is a strongly continuous semigroup for 0;t   

(2) :F X Y  is locally Lipschitz continuous; 

(3) :tAe Y X    for 0t   and for some 1   

 ,

tA

L X Y

C
e

t
    for 0 .t T   

In the above example, we used 2X H  and 2Y L . If A is a sectorial 

operator that generates an analytic semigroup on Y , then one can define 

fractional powers A of A , and the semigroup  tAe  satisfies the above 

properties with  X D A  for 0 1   [36]. Thus, one gets a local 

existence result provided that   2:F D A L   is locally Lipschitz, with 

an existence-time that depends on the X -norm of the 

initial data. 

In general, the X -norm of the solution may blow up in finite time, and 

one gets only a local solution. If, however, one has an a priori estimate 

for  
X

u t  that is global in time, then global existence follows from the 

local existence result. 

Check your progress 

1. Explain about a semi linear heat equation. 

.---------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------- 
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11.3 THE NONLINEAR SCHRODINGER 

EQUATION 
 

The nonlinear Schrodinger (NLS) equation is 

(11.43)    
tiu u u u


    

where R  and 0   are constants. In many applications, such as the 

asymptotic description of weakly nonlinear dispersive waves, we get 

2,  leading to the cubically nonlinear NLS equation. 

A physical interpretation of (11.43) is that it describes the motion of a 

quantum mechanical particle in a potential V u


   which depends on 

the probability density 
2

u of the particle c.f. (11.14). If 0   we can 

normalize 1    so the magnitude of   is not important; the sign of   

is, however, crucial. 

If 0  , then the potential becomes large and negative when 
2

u

becomes large, so the particle ‗digs‘ its own potential well; this tends to 

trap the particle and further concentrate is probability density, possibly 

leading to the formation of singularities in finite time if 2n  and 

4/ .n   The resulting equation is called 

the focusing NLS equation. 

If 0,   then the potential becomes large and positive when 
2

u

becomes large; this has a repulsive effect and tends to make the 

probability density spread out. The resulting equation is called the 

defocusing NLS equation. The local 2L -existence result that we obtain 

here for subcritical nonlinearities 0 4/ n   is, 

however, not sensitive to the sign of  . 

The one-dimensional cubic NLS equation 

2
0t xxiu u u u    

is completely integrable. If 0  , this equation has localized traveling 

wave solutions called solitons in which the effects of nonlinear self-

focusing balance the tendency of linear dispersion to spread out the the 

wave. Moreover, these solitons preserve their identity under nonlinear 

interactions with other solitons. Such localized solutions exist for the 
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focusing NLS equation in higher dimensions, but the  NLS equation is 

not integrable if 2n  , and in that case the soliton solutions are not 

preserved under nonlinear interactions. 

In this section, we obtain an existence result for the NLS equation. The 

linear Schrodinger equation group is not smoothing, so we cannot use it 

to compensate for the nonlinearity at a fixed time as we did in Section 

11.5 for the semilinear equation. Instead, we use some rather delicate 

space-time estimates for the linear Schrodinger equation, called 

Strichartz estimates, to recover the powers lost by the nonlinearity. 

We derive these estimates first. 

11.3.1. Strichartz estimates.  
 

The Strichartz estimates for the Schrodinger equation (11.13) may be 

derived by use of the interpolation estimate in Theorem 11.16 and the 

Hardy-Littlewood-Sobolev inequality in Theorem 11.77. The space-time 

norm in the Strichartz estimate is  qL R  in time and  r nL R  in space for 

suitable exponents  ,q r , which we call an admissible pair. 

Definition 11.52. The pair of exponents  ,q r  is an admissible pair if 

2

2

n n

q r
   

Where 2 q    and  

(11.45)    
2

2
2

n
r

n
 


    if 3n   

Or 2 r    if 1, 2.n   

The Strichartz estimates continue to hold for some endpoints with 2q   

or q   , but we will not consider these cases here. 

THEOREM 11.53. Suppose that   :T t t R  is the unitary group of 

solution operators of the Schrodinger equation on nR defined in (11.22) 

and  ,q r  is an admissible pair as in Definition 11.52. 

(1) For  2 ,nf L R  let     .u t T t f  Then  ;q ru L R L ,  and there is 

a 

constant  ,C n r  such that 
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(11.46)  
  2;

.q rL R L L
u C f  

(2) for  
' '

; ,q rg L R L Let  

      .v t T t s g s ds



   

Then    
' ' 2; ;q rv L R L C R L   and there is a constant  ,C n r  such that  

(11.47)    
 

' '2; ;
,q rL R L L R L

v C g  
 
 

  

(11.48)    
   ' '; ;

.q r q rL R L L R L
v C g  

Proof. By a density argument, it is sufficient to prove the result for 

smooth functions. We therefore assume that  ;cg C R S  is a smooth 

Schwartz-valued function with compact support in time and .f S  We 

prove the inequalities in 

reverse order. 

Using the interpolation estimate Theorem 11.16, we have for 2 r    

that 

 
 

 
 

'

1/ 2 1/
.

4

r

r

L

n rL

g s
v t ds

t s







  

If r  is admissible, then  0 1/ 2 1/ 1.n r    Thus, taking the qL norm 

of this inequality with respect to t and using the Hardy-Littlewood-

Sobolev inequality  (Theorem 11.77) in the result, we find that 

   '; ;q r q rL R L L R L
v C g  

Where p  is given by  

1 1
1 .

2

n n

p q r
     

If ,q r satisfy (11.44), then 
' ,p q   and we get (11.48). 

Using Fubini‘s theorem and the unitary group property of   ,T t we have 

      
        

 
2 2

, ,
n nL R L R

v t v t T t r g r T t s g s drds
 

  
    

      
 2

,
nL R

T s r g r g s drds
 

 
    

    
 2

, .
nL R

v s g s ds



   



Notes 

110 

Using Holder‘s inequality and (11.48) in this equation, we get 

 
       ' '2

2 2

; ; ;
.q r q r q rn L R L L R L L R LL R

v t v g C g   

Taking the supremum of this inequality over ,t R we obtain (11.47). In 

fact, since 

       v t T t T s g s ds



   

 2;v C R L  is and 2L  solution of the homogeneous Schrodinger 

equation and  
 2 nL R

v t  is independent of .t  

If    , ,f S u t T t f   and  , ,cg C R s  then using (11.48) we get  

          22
, ,

LL
u t g t dt T t f g t dt

 

 
   

    
2

, ,
L

f T t f g t dt



   

   2
2L

L

f T t g t dt



   

 2 ' ';
.q rL L R L

C f g  

It then follows by duality and density that 

 
 

    

 

2

2

' '

;
;

;

,
sup ,q r

q rc

L

L R L L
g C R S

L R L

u t g t dt
u C f

g







 


 

which proves (11.46).  

This estimate describes a dispersive smoothing effect of the Schr¨odinger 

equation. For example, the rL -spatial norm of the solution may blow up 

at some time, but it must be finite almost everywhere in t . Intuitively, 

this is because if the Fourier modes of the solution are sufficiently in 

phase at some point in space and time that they combine to form a 

singularity, then dispersion pulls them apart at 

later times. 

Although the above proof of the Schrodinger equation Strichartz 

estimates is elementary, in the sense that given the interpolation estimate 

for the Schrodinger equation and the one-dimensional Hardy-Littlewood-

Sobolev inequality it uses only Holder‘s inequality, it does not explicitly 

clarify the role of dispersion (beyond the dispersive decay of solutions in 

time). An alternative point of view is in terms of 
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Restriction theorems for the Fourier transform. 

The Fourier solution of the Schrodinger equation (11.13) is 

   
2

.
, .

n

ik x i k t

R
u x t f k e dk

   

Thus, the space-time Fourier transform  ,u k   of  ,u x t  

 
 

  .1
, 1 , ,

2

ik x i tu k r n u x t e dxdt



    

is a measure supported on the paraboloid 
2

0k   . This surface has 

nonsingular curvature, which is a geometrical expression of the 

dispersive nature of the Schrodinger equation. The Strichartz estimates 

describe a boundedness property of the restriction of the Fourier 

transform to curved surfaces. 

As an illustration of this phenomenon, we state the Tomas-Stein theorem 

on the restriction of the Fourier transform in 1nR  to the unit sphere .nS  

Theorem 11.114. Suppose that  1p nf L R   with 

2 4
1

4

n
p

n


 


 

and let .
n

g f 
S

 Then there is a constant  ,C p n  such that 

   1
2

.p n
n L

L
g C f 

S
 

11.3.2 Local 2L -solutions.  
 

In this section, we use the Strichartz estimates for the linear Schrodinger 

equation to obtain a local existence result for solutions of the nonlinear 

Schrodinger equation with initial data in 2L . 

If X  is a Banach space and 0T  , we say that   0, ;u C T X  

is a mild X -valued solution of (11.43) if it satisfies the Duhamel-type 

integral equation 

(11.49)           
0

t

u T t f i T t s u s u s ds


      for  0,t T  

where   itT t e   is the solution operator of the linear Schr¨odinger 

equation defined by (11.22). If a solution of (11.49) has sufficient 

regularity then it is also a solution of (11.43), but here we simply take 
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(11.49) as our definition of a solution. We suppose that 0t   for 

definiteness; the same arguments apply for 0t  . 

Before stating an existence theorem, we explain the idea of the proof, 

which is based on the contraction mapping theorem. We write (11.49) as 

a fixed-point equation 

(11.50)             ,u u u t T t f i u t      

(11.51)            
0

.
t

u t T t s u s u s ds


    

We want to find a Banach space E  of functions  : 0, ru T L  and a 

closed ball B E  such that : B B   is a contraction mapping when 

0T   is sufficiently small. 

As discussed in Section 11.4.3, the Schrodinger operators  T t  form a 

strongly continuous group on pL  only if 2.p   Thus if 
2 ,f L  then 

       2/ 1 2: 0, ; 0, ; ,C T L C T L


   

but  does not map the space   0, ; rC T L  into itself for any exponent 

1 .r   

If   is not too large, however, there are exponents ,q r  such that 

(11.52)       : 0, ; 0, ; .q r q rL T L L T L   

This happens because, as shown by the Strichartz estimates, the linear 

solution operator T  can regain the space-time regularity lost by the 

nonlinearity. (For a brief discussion of vector-valued pL -spaces, see 

Section 6.A.) 

To determine values of ,q r  for which (11.52) holds, we write 

 0, ;q r q r

t xL T L L L  

for short, and consider the action of   defined in (11.50)–(11.51) on 

such a space. 

First, consider the term Tf  in (11.50) which is independent of u . 

Theorem 11.53  

implies that q r

t xTf L L  if 
2f L  for any admissible pair  ,q r . 

Second, consider the nonlinear term  u  in (11.51). We have 
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1/

/
1

0 n

q
q rT rq r

t xu u L L u dx dt
  

   
   

  
       1 / 1

1 / 1
1

0 n

q
q rT r

u dx dt

 
 


 

 
 

  
 
   

   1 1

1
.r r

t xL L
u  


 


  

Thus, if 1 1q r

t xu L L  then   2 2' 'q r

t xu u L L


  where  

(11.53)      1 2 1 2' 1 , ' 1 .q q r r      

If  2 2,q r  is an admissible pair, then the Strichartz estimate (11.48) 

implies that 

  2 2 .
q r

t xu L L   

In order to ensure that   preserves the r

xL -norm of u , we need to 

choose 1 2 ,r r r   which implies that  ' 1 ,r r    or 

(11.54)      2.r    

If r  is given by (11.54), then it follows from Definition 11.52 that 

   2 2, , 2q r q    

is an admissible pair if 

(11.55)     
 4 2

q
n






  

and  0 4 / 2 ,n   or 0    if 0    In that case, we have  

1 2 2:
q q

t x t xL L L L     

Where  

(11.56)     1 ' 1 .q q    

In order for   to map 2q

t xL L  into itself, we need 1q q

t tL L  or 1q q . 

This condition holds if 2 q     4/ .n   In order to prove that   is a 

contraction we will interpolate in time from 1q

tL to ,q

tL which requires that 

1a q  or 4/ .n   

A similar existence result holds in the critical case 4/ n   but the proof 

requires a more refined argument which we do not describe here. 

Thus according to this discussion, 

2 2: q q

t x t xL L L L     



Notes 

114 

if q  is given by (11.55) and 0 4/ .n   This motivates the hypotheses 

in the  following theorem. 

THEOREM 11.55. Suppose that 0 4/ n   and 

 4 2
.q

n






  

For every  2 ,nf L R  there exists 

 2, , , 0nL
T T f     

and a unique solution u of (11.49) with 

       2 20, ; 0, ; .n q nu C T L R L T L R   

Moreover, the solution map f u  is locally Lipschitz continuous. 

PROOF. For 0F  , let E  be the Banach space 

    2 20, ; 0, ;qE C T L L T L   

with norm  

(11.57)    
 

    2 2

1/

00,
max

q
T q

E L LT
u u t u t dt


    

and let   be the map in (11.50)–(11.51). We claim that  u  is well-

defined for u E and : .E E   

The preceding discussion shows that   2q

t xu L L   if 2.q

t xu L L  

Writing   2 20, ; ,t xC L C T L we see that   2. t xT f C L since 
2f L and 

T  is a strongly continuous group on 2L . Moreover, (11.47) implies that 

  2

t xu C L   since  u  is the uniform limit of smooth functions 

 ku  such that ku u  in 2 . .q

t xL L c f    

(11.71). Thus, : .E E   

Next, we estimate  
E

u  and show that there exist positive numbers 

   2, , , 2, ,,n nL L
T T f a a f     

such that   maps the ball 

(11.58)     :
E

B u E u a    

into itself. 

First, we estimate .
E

Tf  Since T  is a unitary group, we have 
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(11.59)     2 2
t xC L L

Tf f  

while the Strichartz estimate (11.46) implies that 

(11.60)    2 2 .q
t xL L L

Tf C f     

   

Thus, there is a constant C = C(n, α) such that 

(11.61)    2 .
E L

Tf C f  

In the rest of the proof, we use C  to denote a generic constant depending 

on n and  . 

Second, we estimate  
E

u  where   is given by (11.51). The 

Strichartz estimate (11.47) gives  

 
 2 2 ''

1

qxt
xt

C L L L

u C u







   

(11.62)         ' 1 2 ' 1

1
q

xtL L
C u   


  


  

    ' 2

1

q
xtL L

C u 






  

where 1q  is given by (11.56). If  0,pL T  and 1 ,p q   then 

Holder‘s inequality 

with / 1r q p   gives 

 
  

1/

0, 0
1.p

p
T p

L T
t dt    

(11.63)        
1/

1/ ' 1/ '
'

0 0
1

p
r r

T T prr dt t dt
 

  
 
   

    
 

1/ 1/

0,
.q

p q

L T
T   

Using this inequality with 1p q  in (11.62), we get 

(11.64)     
 2

1

2 q
t xL LxtC L

u CT u









   

Where   11 1/ 1/ 0q q      is given by  

(11.65)     1 .
4

n
    

We estimate   2q
t xL L

u


  in a similar way. The Strichartz estimate 

(11.48) and the Holder estimate (11.63) imply that 
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(11.66)      2 22

1 1
.q qq

t x t xt x
L L L LL L

u C u CT u 

 
 

 
    

Thus, from (11.64) and (11.66), we have 

(11.67)      2

1
.q

t xL LE
u CT u 





   

Using (11.61) and (11.67), we find that there is a constant  ,C C n   

such that 

(11.68)      2 2

1

q
t xE L L LE E

u Tf u C f C T u 

  


       

for all .u E  We choose positive constants ,a T  such that  

22 , 0 2 1.
L

a C f C T a     

Then (11.68) implies that : B B   where B E  is the ball (11.118). 

Next, we show that   is a contraction on B . From (11.110) we have 

(11.69)             .u v i u v        

Using the Strichartz estimates (11.47)–(11.48) in (11.51) as before, we 

get 

(11.70)       
 2 ''

.
q
t x

E L L

u v C u u v v


 


     

For any 0   there is a constant  C   such that 

 w w z z C w z w z
   

       for all , .w z  

Using the identity 

 
' 2

2
1







 


 

and Holder‘s inequality with  1, ' 1 / ,r r      we get that 

 

   

2 '

1/ 2 '
2'

xL

u u v v u u v v dx



   




 

   
 
  

 
   

 1/ 2 '
2 '

2 '
C u v u v dx




  



 

   
 
  

 
   1/ ' 2 '
' 2 '

r
r

C u v dx




 


 
  

 
  

  
 1/ 2 '

2 '
r

r
u v dx







  

    2 2 2
x x xL L L

C u v u v  
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We use this inequality in (11.70) followed by Holder‘s inequality in time 

to get 

       2 2 2

1/ '
'

'

0 x x x

q
qT q

L L LE
u v C u v u v dt  

 
  

         
  

   2 2

1/ ' '
' '

0 x x

p q
p qT

L L
C u v dt 

 
 

      
  

 2

1/ '
' '

0
.

x

pq
T p q

L
u v dt  

Taking / ' 1p q q   we get  

         22 2

1/ '
' ' ' '

0
.q

t xx x

pq
T p q p q

L LE L L
u v C u t v t dt u v  

 

 

     
   

Interpolating in time as in (11.63), we have  

      2 2

1/ ' 1/
' ' ' '' ' '

0 0 0
1

x x

r r
T T Tp q p qp q r

L L
u t dt dt u t dt

 

 
 

    

and taking ' ' ,p q r q   which implies that 1/ ' ' 'p q r   where  is 

given by (11.65), 

we get 

   22

1/
' '

0
.q

t xx

r
T p q

L LL
u t dt T u v 

 


   

It therefore follows that 

(11.71)   

      2 2 2 .q q q
t x t x t xL L L L L LE

u v CT u v u v  

 
        

Using this result in (11.69), we get 

      .
E E EE

u v C T u v u v
       

Thus if , ,u v B  

    2 .
EE

u v C T u v       

Choosing 0T   such that 2 1,C T a    we get that : B B   is a 

contraction, so it has a unique fixed point in B . Since we can choose the 

radius a of B  as large as we wish by taking T  small enough, the solution 

is unique in E . 

The Lipshitz continuity of the solution map follows from the contraction 

mapping theorem. If f  denotes the map in (11.110), 
1 2
, :f f B B  

are contractions, and 1 2,u u are the fixed points of 
1 2
, ,f f  then 
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21 2 1 2 1 2E L E
u u C f f K u u      

Where 1.K   Thus  

21 2 1 2 .
1E L

C
u u f f

K
  


 

This local existence theorem implies the global existence of 2L -solutions 

for subcritical nonlinearities 0 4/ n   because the existence time 

depends only the 2L -norm of the initial data and one can show that the 

2L -norm of the solution is constant in time. 

For more about the extensive theory of the nonlinear Schrodinger 

equation and other nonlinear dispersive PDEs see, for example, [6, 29, 

39, 40]. In this section, we summarize some results about Schwartz 

functions, tempered distributions, and the Fourier transform.  

Check your progress 

2. Explain about the non linear Schrodinger equation. 

.---------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------- 

 

11.4 THE SCHWARTZ SPACE 
 

Since we will study the Fourier transform, we consider complex-valued 

functions. 

DEFINITION 11.56. The Schwartz space  nS R  is the topological 

vector space of functions : nf R R such that  nf C R and 

  0x f x     as x   

for every pair of multi-indices 
0, .nR    For 

0, nR   and  nf S R  

let 

(11.72)    
,

sup .
nR

f x f 

 
   

A sequence of functions  :kf k R  converges to a function f  in 

 nS R  if   

,
0nf f

 
   as k   
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for every 
0, .nR    

That is, the Schwartz space consists of smooth functions whose 

derivatives (including the function itself) decay at infinity faster than any 

power; we say, for short, that Schwartz functions are rapidly decreasing. 

When there is no ambiguity, we will write  nS R  as S . 

EXAMPLE 11.57. The function  
2x

f x e


  belongs to  nS R . More 

generally, if p is any polynomial, then    
2

x
g x p x e


 belongs to S . 

EXAMPLE 11.58. The function 

 
 2

1

1
k

f x

x





 

does not belongs to S  for any k R since  
2k

x f x does not decay to 

zero as .x   

EXAMPLE 11.59. The function :f R R  defined by 

   
2 2

sinx xf x e e  

does not belong to  S R since  'f x  does not decay to zero as .x   

The space  nD R  of smooth complex-valued functions with compact 

support is contained in the Schwartz space  nS R . If kf f  in D  (in 

the sense of Definition 3.8), then kf f in S , so D is continuously 

embedded in S . Furthermore, if f S , and  n

cn C R is a cutoff 

function with    / ,k x x k   then k f f  in S  as k  , so D  is 

dense in .S  

The topology of S  is defined by the countable family of semi-norms 

,
.

 
 given in (11.72). This topology is not derived from a norm, but it 

is metrizable; for example, we can use as a metric 

 
0

, ,

, ,

,
1n

C f g
d f g

f g

   

   




 
  

where the , 0c   are any positive constants such that 
0

,, n c  

converges. Moreover, S  is complete with respect to this metric. A 

complete, metrizable topological vector space whose topology may be 



Notes 

120 

defined by a countable family of seminorms is called a Frechet space. 

Thus, S  is a Frechet space. 

If we want to make explicit that a limit exists with respect to the 

Schwartz topology, we write 

lim ,k
k

f S f


   

and call f  the S -limit of  kf . 

If kf f as k  in S , then 
kf f   for any multi-index 

0

nR . 

Thus, the differentiation operator : S S   is a continuous linear map 

on S . 

11.4.1. Tempered distributions.  
Tempered distributions are distributions (c.f. Section 3.3) that act 

continuously on Schwartz functions. Roughly speaking, we can think of 

tempered distributions as distributions that grow no faster than a 

polynomial at infinity. 

DEFINITION 11.60. A tempered distribution T  on nR  is a continuous 

linear functional  : .nT S R R  The topological vector space of 

tempered distributions 

is denoted by  ' nS R  or 'S . If ,T f , fi denotes the value of 'T S  

acting on ,f S then a sequence  kT  converges to T  in 'S , written 

,kT T  if 

, ,kT f T f     fi for every f S . 

Since D S  is densely and continuously embedded, we have ' 'S D . 

Moreover, a distribution 'T D extends uniquely to a tempered 

distribution 'T S  if and only if it is continuous on D with respect to the 

topology on S . 

Every function 1

1ocf L defines a regular distribution 'fT D  by 

,fT f dx         for all .D   

If f p is bounded by some polynomial p T, then 
fT  extends to a 

tempered distribution ',fT S  but this is not the case for functions f that 

grow too rapidly at infinity. 
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EXAMPLE 11.61. The locally integrable function  
2

x
f x e defines a 

regular distribution 'fT D ′ but this distribution does not extend to a 

tempered distribution. 

EXAMPLE 11.62. If    cos ,x xf x e e   then  'fT D R  extends to a 

tempered distribution  'T S R  even though the values of  f x  grow 

exponentially as x  . 

The name ‗tempered distribution‘ is short for ‗distribution of temperate 

growth,‘ meaning polynomial growth. 

This tempered distribution is the distributional derivative 
'

gT T of the 

regular distribution 
gT  where 'f g  and    sin :xg x e  

   , , ' sin xf g e x dx          for all .S   

The distribution T is decreasing in a weak sense at infinity because of the 

rapid oscillations of f . 

EXAMPLE 11.63. The series 

  n x n

n






  

Where 
 n

  is the nth derivative of the  -function converges to a 

distribution in  ' ,D R  but it does not converge in  'S R  or define a 

tempered distribution. 

We define the derivative of tempered distributions in the same way as for 

distributions. If 
0

nR  is a multi-index, then 

 , 1 , .T T
       

We say that a C -function f  is slowly growing if the function and all 

of its derivatives are of polynomial growth, meaning that for every 

0

nR there exists a constant C  and an integer N such that 

   2
1 .

N

f x C x




    

If f  is C
 and slowly growing, then f S   whenever ,S  and 

multiplication by f  is a continuous map on S . Thus for 'T S ,  we 

may define the product 'fT S by 

, ,fT T f   
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11.5 THE FOURIER TRANSFORM 
 

The Schwartz space is a natural one to use for the Fourier transform. 

Differentiation and multiplication exchange rˆoles under the Fourier 

transformand therefore so do the properties of smoothness and rapid 

decrease. As a result, the Fourier transform is an automorphism of the 

Schwartz space. By duality, the Fourier transform is also an 

automorphism of the space of tempered distributions. 

11.5.1. The Fourier transform on S . 

DEFINITION 11.64. The Fourier transform of a function  nf S R is 

the function : nf R R  defined by 

(11.73)      

  
 

  .1
.

2

ik x

n
f k f x e dx



    

The inverse Fourier transform of f  is the function : nf R R   defined 

by 

    . .ik xf x f k e dk    

We generally use x  to denote the variable on which a function f  

depends and k to denote the variable on which its Fourier transform 

depends. 

EXAMPLE 11.65. For 0,  the Fourier transform of the Gaussian 

 
 

2 2/ 2

/ 2
2

1

2

x

n
f x e






  

is the Gaussian 

 
 

22 / 21

2

k

n
f x e





   

The Fourier transform maps differentiation to multiplication by a 

monomial and multiplication by a monomial to differentiation. As a 

result, f S if and only if f S  , and nf f  in S if and only if 

nf f  in S . 
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THEOREM 5.66. The Fourier transform :F S S  defined by 

:F f f 
 is a continuous, one-to-one map of S  onto itself. The 

inverse 1 :F S S   is given by 
1 :F f f  . If f S , then 

  ,F f ik f
          .F ix f f

     
 

 

The Fourier transform maps the convolution product of two functions to 

the pointwise product of their transforms. 

THEOREM 5.67. If , ,f g S  then the convolution * ,h f g S   and 

 2 .
n

h f g    

If ,f g S , then  

 2 .
n

f gdx f g dk     

In particular,  

 
2

2 .
n

f dx f dk    

11.5.2. The Fourier transform on 'S .  
The main reason to introduce tempered distributions is that their Fourier 

transform is also a tempered distribution. 

If , ,S   then by Fubini‘s theorem 

 
 

  .1

2

ix y

n
dx x y e dy dx  




 

  
  

    

 
   .1

2

ix y

n
x e dx y dy 




 

  
  
   

.dx   

This motivates the following definition for the Fourier transform of a 

tempered distribution which is compatible with the one for Schwartz 

functions. 

DEFINITION 11.68. If 'T S , then the Fourier transform 'T S  is the 

distribution defined by 

, ,T T    for all .S   

The inverse Fourier transform ˇ T ∈ S′ is the distribution defined by 

, ,T T    for all .S   
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We also write T FT  and 1 .T F T  The linearity and continuity of the 

Fourier transform on S implies that T  is a linear, continuous map on S , 

so the Fourier transform of a tempered distribution is a tempered 

distribution. The invertibility of the Fourier transform on S  implies that 

: ' 'F S S  is invertible with 

inverse 1 : ' 'F S S  . 

EXAMPLE 11.69. If  is the delta-function supported at 

 0, , 0 ,   then 

 
 

 
 

1 1
, , 0 , .

2 2
n n

x dx      
 

     

Thus, the Fourier transform of the  -function is the constant function 

 2
n




. We may write this Fourier transform formally as 

 
 

.1
.

2

ik x

n
x e dk


   

This result is consistent with Example 11.65. We have for the Gaussian 

 -sequence that 

 

2 2/ 2

/ 2
2

1

2

x

n
e







  in 'S as 0.   

The corresponding Fourier transform of this limit is 

   

22 / 21 1

2 2

k

n n
e



 


   in 'S  as 0.   

If 'T S , it follows directly from the definitions and the properties of 

Schwartz functions that 

       , , 1 , , , , ,T T T T ik T ik ik T
          


              

with a similar result for the inverse transform. Thus, 

   , .T ik T ix T T
           

The Fourier transform does not define a map of the test function space 

D into itself, since the Fourier transform of a compactly supported 

function does not, in general, have compact support. Thus, the Fourier 

transform of a distribution 'T D  is not, in general, a distribution 

'T D ; this explains why we define the. Fourier transform for the 

smaller class of tempered distributions. 
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The Fourier transform maps the space D  onto a space Z  of real-analytic 

functions, and one can define the Fourier transform of a general 

distribution 'T D as an ultradistribution 'T Z  acting on Z . We will 

not consider this theory further here. 

11.5.3. The Fourier transform on 1L . 

 If  1 nf L R , then 

  . ,ik xf x e dx f dx    

so we may define the Fourier transform f 
 directly by the absolutely 

convergent integral in (11.73). Moreover, 

 
 

1
.

2
n

f k f dx


   

It follows by approximation of f  by Schwartz functions that f 
 is a 

uniform limit of Schwartz functions, and therefore 
0f C  is a 

continuous function that approaches zero at infinity. We therefore get the 

following Riemann-Lebesgue lemma. 

THEOREM 11.70. The Fourier transform is a bounded linear map 

   1

0: n nF L R C R and 

 
1

1
.

2
n LL

f f




   

The range of the Fourier transform on 1L  is not all of 0C , however, and it 

is difficult to characterize. 

11.5.4. The Fourier transform on 2L .  
The next theorem, called Parseval‘s theorem, states that the Fourier 

transform preserves the 2L -inner product and norm, up to factors of 2 . 

It follows that we may extend the Fourier transform by density and 

continuity from S to an isomorphism on 2L  with the same properties. 

Explicitly, if 
2f L , we choose any sequence of functions kf S  such 

that kf  converges to f  in 2L  as k  . Then we define f 
 to be the 

2L -limit of the .kf 
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Note that it is necessary to use a somewhat indirect approach to define 

the Fourier transform on 2L , since the Fourier integral in (11.73) does 

not converge if 
2 1\ .f L L  

THEOREM 11.71. The Fourier transform    2 2: n nF L R L R  is a 

one-to-one, onto bounded linear map. If  2, nf g L R , then 

 2 .
n

f gdx f gdk    

In particular,  

 
22

2 .
n

f dx f dk    

11.5.5. The Fourier transform on pL .  

The boundedness of the Fourier transform ': p pF L L  for 1 2p    

follows from its boundedness for 1:F L L  and 2 2:F L L by use of 

the following Riesz-Thorin interpolation theorem. 

THEOREM 11.72. Let   be a measure space and  

0 1 0 11 , ,1 , .p p q q       

Suppose that  

       1 1: po p qo qT L L L L        

Is a linear map such that    : pi qiT L L    for 0,1i   and  

0 0 1 10 1,q p q pL L L L
Tf M f Tf M f   

For some constants 0 1, .M M  if 0 1   and  

1 1 1 1
,

1 1p po p q qo q

    
     

Then    : p qT L L    maps  pL   into  qL   and  

1

0 1 .q pL L
Tf M M f   

In this theorem,    1po pL L   denotes the vector space of all 

complex-valued functions of the form 0 1f f f   where  0

pof L  and 

 1

1

pf L  . Note that if '

0qo p  and 
'

11 ,q p  then 'q p . An 

immediate consequence of this theorem and the 1 2L L  estimates for the 

Fourier transform is the following Hausdorff-Young 

theorem. 
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THEOREM 11.73. Suppose that 1 2.p   The Fourier transform is a 

bounded linear map    ': p n p nF L R L R  and 

 
'

1
.

2
nLp Lp

Ff f


  

If 1 2,p   the range of the Fourier transform on pL  is not all of 'pL , 

and there exist functions 
'pf L  

whose inverse Fourier transform is a tempered distribution that is not 

regular. Correspondingly, if 2p   the range of : 'pF L S contains 

non-regular distributions. For example, 1 L  and  1 .F 
 

Check your progress 

3. Explain about Fourier transform.
 

.---------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------- 

11.6 THE SOBOLEV SPACES  s nH R  
 

A function belongs to 2L  if and only if its Fourier transform belongs to 

2L , and  the Fourier transform preserves the 2L -norm. As a result, the 

Fourier transform provides a simple way to define 2L -Sobolev spaces on 

nR , including ones of fractional and negative order. This approach does 

not generalize to pL -Sobolev spaces with 2,p  since there is no simple 

way to characterize when a function belongs to pL in terms of its Fourier 

transform. 

We define a function . : nR R  by  

 
1

2 21 .x x   

This function grows linearly at infinity, like x , but is bounded away 

from zero. (There should be no confusion with the use of angular 

brackets to denote a duality pairing.) 
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DEFINITION 11.74. For s R , the Sobolev space  s nH R  consists of 

all tempered distributions  ' nf S R  whose Fourier transform f 
 is a 

regular distribution such that 

 
22

.
s

f k f k dk   

The inner product and norm of , sf g H are defined by 

            
1

22 2 2
, 2 , 2 .s s

s sn n

H H
f g k f k g k dk f k f k dk       

Thus, under the Fourier transform, Hs(Rn) is isomorphic to the weighted 

2L -Space 

(11.74)    

    2: : ,
s n nH R f R R k f L     

with inner product 

   
2

, 2 .s
H

sn
f g k f g dk

      

The Sobolev spaces  :sH s R form a decreasing scale of Hilbert 

spaces with sH  continuously embedded in rH  for .s r  If s R  is a 

positive integer, then  s nH R is the usual Sobolev space of functions 

whose weak derivatives of order less than or equal to s  belong to  2 nL R

, so this notation is consistent with our previous notation. 

We may give a spatial description of sH  for general s R  in terms of 

the pseudo-differential operator : ' 'S S   with symbol k defined by 

(11.75)    

        
1

2 , .I f k k f k       

Then 
sf H  if and only if 

2 ,s f L  and 

      
1

2 2
, , .s s

s s s

H H
f g f g dx f f dx       

Thus, roughly speaking, a function belongs to sH if it has s weak 

derivatives (or integrals if 0s  ) that belong to 
2 .L  

EXAMPLE 11.75. If  ' ,nS R   then  2
n

 


 and 
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2 2 2

2

1

2

s s

n
k dk k dk




   

converges if 2s n  . Thus,  s nH R   if / 2,s n   which is precisely 

when functions in sH  are continuous and pointwise evaluation at 0 is a 

bounded linear functional. More generally, every compactly supported 

distribution belongs to sH for some .s R  

EXAMPLE 11.76. The Fourier transform of 1 ',S  given by 1  ,  is 

not a regular distribution. Thus, 1 sH  for any .s R  

We let 

(11.76)     , .s s

s s

H H H H 

 

   

Then 'S H H S     and by the soblev embedding theorem 

0 .H C 
 

11.7 FRACTIONAL INTEGRALS 
One way to approach fractional integrals and derivatives is through 

potential theory. 

The Riesz potential. For 0 ,n  we define the Riesz potential 

: nI R R   by 

 
 

 

/ 22 / 21 1
, .

/ 2 / 2

n

n
I x

nx



 



 


 


 

 
 

Since 0,   we have  1

1

n

ocI L R   

The Riesz potential of a function S  is defined by 

 
 1

* .
n

y
I x dy

x y
 




 



  

The Fourier transform of this equation is 

    
1

* .I k k
k

 
   

Thus, we can interpret convolution with I as a homogeneous, 

spherically symmetric fractional integral operator of the order  . We 

write it symbolically as 

* ,I D
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where D  is the operator with symbol k . In particular, if 3n   and 

2,  the potential 2I  is the Green‘s function of the Laplacian operator, 

2 .I    

If we consider 

   : p n q nD L R L R


  

as a map from pL  to qL , then a scaling argument similar to the one for 

the Sobolev embedding theorem implies that the map can be bounded 

only if 

(11.77)     
1 1

.
q p n


   

The following Hardy-Littlewood-Sobolev inequality states that this map 

is, in fact, bounded for 1 /p n   . The proof (see e.g. [18] or [27]) 

uses the boundedness of the Hardy-Littlewood maximal function on pL  

for 1 p   . 

THEOREM 11.77. Suppose that 0 ,1 / ,n p n      and q is 

defined by (11.77). If  ,p nf L R then  * q nI f L R  and there exists a 

constant  , ,C n p such that  

* q pL L
I f C f   for every  .p nf L R  

This inequality may be thought of as a generalization of the Gagliardo-

Nirenberg inequality in Theorem 3.28 to fractional derivatives. If 1, 

then *q p  is the Sobolev conjugate of ,p  and writing f D g we get 

 * .p pL L
g C D g  

The Bessel potential. The Bessel potential corresponds to the operator 

   
/ 2

2/ 2
.I I D





      

where   is defined in (11.75) and 0  . The operator   is a non-

homogeneous, spherically symmetric fractional integral operator; it plays 

an analogous role for non-homogeneous Sobolev spaces to the fractional 

derivative D


 for homogeneous Sobolev spaces. 

If ,S  then 
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 / 2
2

1
.

1

k k

k




    



 

Thus, by the convolution theorem, 

*G

    

where 

(11.78)    

 
1

/ 2
2

1
.

1

G F

k
 



 
 

  
  

 

For any 0 ,    this distributional inverse transform defines a 

positive function that is smooth in  \ 0nR .  For example, if 2  , then 

2G  is the Green‘s function of the Helmholtz equation 

2 2 .G G     

Unlike the kernel I of the Riesz transform, however, there is no simple 

explicit expression for .G  

For large k , the Fourier transform of the Bessel potential behaves 

asymptotically like the Riesz potential and the potentials have the same 

singular behavior at 0x . For small k , the Bessel potential behaves 

like 
2

1 ,
2

k
 

 
 

and it decays exponentially as x   rather than 

algebraically like the Riesz potential. We therefore have the following 

estimate. 

PROPOSITION 11.78. Suppose that 0 n   and G is the Bessel 

potential defined in (11.78). Then there exists a constant  ,C C n

such that  

 0
n

C
G x

x
 

   if 0 1,x      20

x

G x e



   if 1.x   

Finally, we state a version of the Sobolev embedding theorem for 

fractional 2L -Sobolev spaces. 

THEOREM 11.79. If 0
2

n
s   and 

1 1
,

2

s

q n
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Then    s n q nH R L R  and there exists a constant  ,C C n s  such 

that  

.q sL H
f f  

If ,
2

n
s    then    0

s n nH R C R  and there exists a constant 

 ,C C n s  such that  

.sL H
f f   

Proof. The result for 
2

n
s   follows from Proposition 11.78 and the 

Hardy-Littlewood-Sobolev inequality c.f. [18]. 

If 
2

n
s  , we have for f S that 

  .sup
n

ik x

L
x R

f f k e dk



   

 f k dk   

    

 
   

2 2

2 2

1
. 1

1

s

s
k f k dk

k

 



  

 
   

1

2 1

2 22

2

1
1

1

s

s
dk k f k dk

k



 
   

      
 

   

,sH
C f  

since the first integral converges when 2s n . Since S  is dense in sH , 

it follows that this inequality holds for every 
sf H  and that 0f C  

since f is the uniform limit of Schwartz functions. 

Check your progress 

4. Prove theorem 11.79 

.---------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------- 

11.8 LET US SUM UP 
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In this unit we have discussed about a Semi linear equations, the non 

linear Schrodinger equation, Local L
2 

solutions, the Schwartz space, 

Tempered distributions, The fourier transforms and The Soble spaces, 

Fractional integrals. In order to prove a local existence result, we choose 

  large enough that the nonlinear term is well-behaved by Sobolev 

embedding, but small enough that the norm of the semigroup maps from 

2L   into 2H  is integrable as 0 .t   As we will see, this is the case if 

/ 4 1,n   so we restrict attention to 1 3n   space dimensions. We 

use the Strichartz estimates for the linear Schrodinger equation to obtain 

a local existence result for solutions of the nonlinear Schrodinger 

equation with initial data in 2L . 

11.9 KEY WORDS 
 

1. Negative Laplacian on a bounded domain, with say homogeneous 

Dirichlet boundary conditions. 

2. The Fourier representation of the semigroup operators. 

3. The linear Schrodinger equation group 

4. The pair of exponents  ,q r  is an admissible pair if 

         

2

2

n n

q r
   Where 2 q    and  

        
2

2
2

n
r

n
 


    if 3n   Or 2 r    if 1, 2.n   

5. A tempered distribution T  on nR  is a continuous linear functional 

 : .nT S R R  

6. Green‘s function of the Laplacian operator. 

11. 10 QUESTIONS FOR REVIEW 

 

1. Discuss about a semi linear equations. 

2. Discuss about non linear Schrodinger equation. 

3. Discuss about Fourier transforms. 

4. Discuss about Sobolev spaces 
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11.12 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. See section 11.2 

2. See section 11.3 

3. See section 11.5 

4. See section 11.7 
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UNIT-12 PARABOLIC EQUATIONS 
 

STRUCTURE 

12.0 Objective 
12.1 Introduction 
12.2 The heat equation 
12.3 General second order parabolic PDE 
12.4 Definition of weak solutions 
12.5 The Galerkin approximation 
12.6 Uniqueness weak solutions 
12.7 Parabolic equations 
12.8 A semi linear heat equations 
12.9 The navier stokes equation 
12.10 Let us sum up 
12.11 Key words 
12.12 Questions for review 
12.13 Suggestive readings and references 
12.14 Answers to check your progress 

12.0 OBJECTIVE 
 

In this unit we will learn and understand about heat equation, general 

second order parabolic PDE,Definition of weak solutions, The 

Galerkin approximation. 

12.1 INTRODUCTION 
 

The theory of parabolic PDEs closely follows that of elliptic PDEs and, 

like elliptic PDEs, parabolic PDEs have strong smoothing properties. 

 For example, there are parabolic versions of the  maximum principle 

and Harnack‘s inequality, and a Schauder theory for Holder continuous 

solutions .  

Moreover, we may establish the existence and regularity of weak 

solutions of parabolic PDEs by the use of 2L -energy estimates. 
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12.2 THE HEAT EQUATION 
 

Just as Laplace‘s equation is a prototypical example of an elliptic PDE, 

the heat equation 

(12.1)  t
u u f    

Is a prototypical example of a parabolic PDE.  

This PDE has to be supplemented by suitable initial and boundary 

conditions to give a well-posed problem with a unique solution.  

As an example of such a problem, consider the following IBVP with 

Direchlet BCs on a bounded open set nR  for 

 : 0, :u R    

 ,t
u u f x t     0for x and t  , 

(12.2)    , 0u x t    

 0for x and t  , 

      ,0u x g x   for x  . 

Here  : 0,f R    and :g R   are a given forcing term 

and initial condition.  

This problem describes the evolution in time of the temperature 

 ,u x y  of  a body occupying the region    containing a heat source f 

per unit volume, whose boundary is held at fixed zero temperature and 

whose initial temperature is g.  

One important estimate  in L
 for solutions of (12.2) follows from 

the maximum principle. If 0f  , corresponding to ‗heat‘ sinks‘, then 

for any 0T  , 

 0,
max max 0,max

T
u g
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To derive this inequality, note that if u is a smooth function which 

attains a maximum at x   and  0 t T  , then 0
t
u   if 

0 t T   or 0
t
u   t T  and 0u  . Thus 0

t
u u    which is 

impossible if 0f  , so u attains its maximum on  0,T , where 

0u  , or at t = 0. The result for 0f   follows by a perturbation 

argument. The physical interpretation of this maximum principle in 

terms of thermal diffusion is that a local ―hotspot‖ cannot develop 

spontaneously in the interior when no heat sources are present. 

Similarly, if 0f  , we have the minimum principle  

 0,
min min 0,min

T
u g

 

 
 

 

Another basic estimate for the heat equation  2in L  follows from an 

integration of the equation. We multiply (12.1) by u, integrate over  , 

apply the divergence theorem, and use the BC that 0u   on   to 

obtain: 

221

2

d
u dx Du dx fudx

dt   
    . 

Integrating this equation with respect to time and using the  initial 

condition, we get  

(12.3) 

 

 
22 2

0 0

1 1
,

2 2

t t

u x t dx Du dxds fudx ds g dx
   

        . 

For 0 t T  , we have from the Cauchy inequality with   

that 

   
1/2 1/2

2 2

0 0 0

t t t

fudx ds f dx ds u dxds
  

       

2 2

0 0

1

4

T T

f dxds u dx ds
 

  
      

2 2

00

1
max

4

T

t T
f dxds T u dx

  
  

    . 
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Thus, taking the supremum of (12.3) over  0,t T  and using this 

inequality with 1/4T   in the result, we get 

 

 
 

22 2 2

0, 0 0

1 1
max ,

4 2

T T

T
u x t dx Du dxdt T f dxdt g dx

   
       

. 

It follows that we have an a priori energy estimate of the form 

(12.4) 

 
   2 2 1

0

2 2

0, ; 0, ; 0

1

2

T

L T L L T H
u u dx dt T f dxdt g dx


 

     . 

Where  C C T  is a constant depending only on T. We will use this 

energy estimate to construct weak solutions. The parabolic smoothing 

of the heat equation is evident from the fact that if 0f  , say we can 

estimate not only the solution u but its derivative Du in terms of the 

initial data g. 

Check your progress 

1. Explain about semi linear heat equation. 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

--------- 

12.3 GENERAL SECOND-ORDER 

PARABOLIC PDES 
 

The qualitative properties of (12.1) are almost unchanged if we replace 

the Laplacian   by any uniformly elliptic operator L on  0,T . 

We write L in divergence form as  

(12.5)  
, 1 1

n n
ij j

i j j

i j j

L a u b u cu
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Where      , , , , ,ij ia x t b x t c x t  are coefficient function with 

ij jia a . We assume that these exists 0   such that 

(12.12)  
2

, 1

,
n

ij

i j

i j

a x t    


   for all    , 0,x t T  and 

nR . 

In fact, we will use a slightly better estimate in which 
 2 20, ;L T L

f is 

replaced by the weaker norm 
 2 10, ;L T H

f


. 

The corresponding parabolic PDE is then 

(12.7)  
1 , 1

n n
j ij

t j j

j i j

u b u cu a u f
 

       . 

Equation (12.7) describes evolution of a temperature field u under the 

combined effect of diffusion ija , advection ib , linear growth or decay 

c, and external heat sources f. 

The corresponding IBVP with homogeneous Dirichlet BCs is 

t
u Lu f  , 

(12.8)      , 0u x t   0for x and t   

       ,0u x g x  for x  . 

Essentially the same estimates hold for this problem as for the heat 

equation. To begin with, we use the 2L -energy estimates to prove the 

existence of suitably defined weak solutions of (12.8). 

Check your progress 

2.Explain about general second order parabolic PDE‘s. 

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

--------- 
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12.4 DEFINITION OF WEAK 

SOLUTIONS 
 

To formulate a definition of a weak solution of (12.8), we first suppose 

that the domain  , the coefficients of L, and the solution u are 

smooth. Multiplying (12.7), by a test function  c
v C  , integrating 

the result over  , and applying the divergence theorem, we get 

(12.9)          2 2
, , ; ,

t L L
u t v a u t v t f t v    for 

0 t T   

Where   2.,.
L

 denotes the 2L -inner product 

         2,
L

u v u x v x dx


  , 

And a  is the bilinear form associated with L 

        
, 1

, ; ,
n

ij

i j

i j

a u v t a x t u x u x dx




     

(12.10)            
1

, ,
n

j

j

j

b x t u x v x dx c x t u x v x dx
 



     

In (12.9), we have switched to the ―vector-valued‖, and write 

   .,u t u t .  

To define weak solutions, we generalize (12.9) in a natural way. In 

order to ensure that the definition makes sence, we make the following 

assumptions. 

ASSUMPTION 12.1: The set nR  is bounded and open, 0T  , 

and ; 

 (1) the coefficient of a in (12.10) satisfy 

  , , 0,ij ja b c L T  ; 

(2) ij jia a  for 1 ,i j n   and the uniform elliptic condition 

(12.6) holds for some constant 0  ; 

 (3)   2 10, ;F L T H    and  2g L  . 
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Here, we allow f to take values in    1 1

0
'H H    . We 

denote the duality pairing between  1H    and  1

0
H   by 

   1 1

0
.,. :H H R      

 Parabolic Equations 

Since the coefficients of a are uniformly bounded in time, it follows ,

     1 1

0 0
: 0,a H H T R     . 

Moreover, there exist constants C > 0 and R   such that for every 

 1

0
,u v H   

(12.11)   1 2
0

2 2

, ;
H L

C u a u u t u  , 

(12.12)   1 1
0 0

, ;
H H

a u v t C u v . 

We then define weak solutions (12.8) as follows. 

Definition 12.2. A function    1

0
: 0,u T H   is a weak solution of 

(12.8) if:  

 (1)      2 1 2 1

0 1
0, ; 0, ;u L T H and u L T H     ; 

 (2) For every  1

0
v H  , 

(12.13)        , , ; ,
t
u t v a u t v t f t v   

For t pointwise a.e. in [0,T] where a is defined in (12.10) 

(3)  0u g . 

The PDE is imposed in a weak sense by (12.13) and the boundary 

condition 0u   on   by  the requirement that    1

0
u t H  . Two 

points about this definition deserve comment. 

First, the time derivative t
u in  (12.13) is understood as a distributional 

time derivative; that is t
u w if  

(12.14)         
0 0

'
T T

t u t dt t w t dt     
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For every  : 0,T R   with  0,
c
C T  . This is a direct 

generalization of the notion of the weak derivative of a real-valued 

function. The integrals in (12.14) are vector-valued Lebesgue integrals 

(Bochner integrals). Which ar defined in an analogous way to the 

Lebesgue integral of an integrable real-valued function as the 1L -limit 

of integrals of simple functions. See section 12.A for further discussion 

of such integrals and the weak derivative of vector-valued functions. 

Equation (12.13) may then be understood in a distributional sense as an 

equation of the weak derivative t
u  on (0, T). 

Second, it is not immediately obvious that the initial condition 

 0u g  in Definition 12.2 makes sense. We do not explicitly require 

any continuity on u , and since   2 1

0
0, ;u L T H   is defined only 

up to  point wise every where equivalence in  0,t T  it is not clear 

that specifying a point wise value 0t   imposes any restriction on u. 

As shown in Theorem 12.41, however, the conditions that 

  2 1

0
0, ;u L T H   and   2 10, ;

t
u L T H    imply that 

    20, ;u C T L  . Therefore, identifying u  with its continuous 

representative, we see that the initial condition makes sense. 

We then have the following existence result, whose proof will be given 

in the following sections. 

THEOREM 12.3. Suppose that the conditions in Assumption 12.1 are 

satisfied. Then for every    2 10, ;f L T H    and  1

0
g H   

there is a unique weak solution  

        2 2 1

0
0, ; 0, ;u C T L L T H     of  (12.8), in the 

sense of Definition 12.2, with   2 10, ;
t
u L T H   . Moreover, there 

is a constant C, depending only on  , T, and the coefficients of L, 

such that   

       2 2 1 2 1 2 1 2
00, ; 0, ; 0, ; 0, ;tL T L L T H L T H L T H L

u u u C f g
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12.5 THE GALERKIN APPROXIMATION 
 

The basic idea of the existence  proof is to approximate 

   1

0
: 0,u T H   by function  : 0,

N N
u T E  that take values in 

a finite-dimensional subspace  1

0N
E H  of  dimension N. To 

obtain the N
u , we project the PDE only N

E , meaning that we require 

that N
u  satisfies the PDE up to a residual which is orthogonal to N

E .  

This gives a system of ODEs for N
u , which has a solution by standard 

ODE theory. Each N
u  satisfies an energy estimate of the same form as 

the a priori estimate for solutions of the PDE.These estimates are 

uniform in N, which allows us to pass to the limit N   and obtain a 

solution of the PDE. 

In more detail, the existence of uniform bunds implies that the 

sequence  Nu  is weakly compact in a suitable space and hence, by 

the Banach-Alaoglu theorem, there is a weakly convergent 

subsequence  
kN

u such that 
kN

u u  as k  . Since the PDE and 

the approximating ODEs are linear, and linear functionals are 

continuous with respect to weak convergence, the weak limit of the 

solutions of the ODE is a solutions of the PDE. As with any similar 

compactness argument, we get existence but not uniqueness, since it is 

conceivable that different subsequence of approximate solutions could 

converge to different weak solutions. We can, however, prove 

uniqueness of a weak solution directly from the energy estimates. Once 

we have weak convergence N
u u  of the full approximate sequence. 

One can than prove that the sequence, in fact, converges strongly in 

 2 1

0
0, ;L T H .  

Method such as this one, in which we approximate the solution of a 

PDE by the projection of the solution and the equation into finite 

dimensional subspaces, are called Galerkin methods. Such methods 

have close connections with the variational formulation of PDEs. For 

example, in the time-independent case of an elliptic PDE given by a 

variational principle, we may approximate the minimization problem 
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over a finite-dimensional subspace N
E . The corresponding equations 

for a critical point are a finite-dimensional approximation of the weak 

formulation of the original PDE. We may then show, under suitable 

assumptions, that as N   solutions N
u  of  finite-dimensional 

minimization problem approach a solution u of the original problem. 

There is considerable flexibility the finite-dimensional spaces N
E  one 

useds in a Galerkin method. For our analysis, we take 

(12.15)  
1 2
, ,.....

N N
E w w w  

To be the linear space spanned by the first N vectors in an orthonormal 

basis  :
k

w k N  of  2L  , which we may also assume to be an 

orthogonal basis of  1

0
H  . For definiteness, take the  k

w x  to be 

the eigenfunctions of the Dirichlet Laplacian on  : 

(12.16)  1

0kw k k k
w w H for k N      

From the previous existence theory for solutions of elliptic. PDEs, the 

Dirichlet Laplacian on a bounded open set is a self-adjoint operator 

with compact resolving, so that suitably normalized set of 

eigenfunctions have the required properties. 

Explicitly, we have 

{1 ;0 }

{ ;0 }

j k

j k

w w dx if j k if j k

Dw Dw dx j if j k if j k





  

  



  

We may expand any 
2( )u L  in L

2
-convergent series as 

( ) ( )k

k

k N

u x c w x


  

Where 2k k L
c =(u,w ) and 

2u L ( )  if and only if  

2
k

k N

c
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Similarly, 1

0( )u H  , and the series converges in 1

0( )H  . If and only 

if  

2
k

k

k N

c


   

We denote by PN the orthogonal projections:  

1 1

0 0: ( ) ( )N NP H E H     or  

1 1

0 0: ( ) ( )N NP H E H      

Which we obtain by restricting or extending PN from 

2 1 1

0 0( ) ( ) ( )L toH or H     respectively. 

Thus PN is defined on 1

0( )H  by 12.17  and on 1

0 ( )H   by 

 1

0, ) ( , ) ( )N NP u v u P v for all v H    

While this choice of EN is convenient for our existence 

proof, other choices are useful in different contexts.  

For example, the finite-element method is a numerical 

implementation of the Galerkin method which uses a 

space EN of piecewise polynomial functions that are 

supported on simplices, or some other kind of element.  

Unlike the eigenfunctions of the Laplacian, finite-

element basis functions, which are supported on a small 

number of adjacent elements, are straightforward to 

construct explicitly. 

 Furthermore, one can approximate functions on domains 

with complicated geometry in terms of the finite-element 

basis functions by subdividing the domain into simplices, 

and one can refine the decomposition in regions where 

higher resolution is required.  

The finite-element basis functions are not exactly 

orthogonal, but they are almost orthogonal since they 

overlap only if they are sup- ported on nearby elements.  

As a result, the associated Galerkin equations involve 
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sparse matrices, which is crucial for their efficient 

numerical solution.  

One can obtain rigorous convergence proofs for finite-

element methods that are similar to the proof discussed 

here. 

12.6 UNIQUENESSS OF WEAK 

SOLUTIONS 
 

If   1 2,u u  are two solutions with the same data f,g, then by linearity   

1 2u u u   is a solution with zero data  0, 0f g  . To show 

uniqueness, it is therefore  

sufficient to show that the only weak solution with zero data is u=0. 

Since  1

0( ) ( ),u t H   we may take   ( )u t   as a test function in 

(6.13), with f=0, to get 

, ( , ; ) 0,tu u a u u t   

12.7 PARABOLIC EQUATIONS 
 

Where this equation holds pointwise a.e. in  ,O T in the sense of weak 

derivatives. Using  the coercitvity estimate 12.11. we find that there are 

constants 0 and       such that 

12 2

0

22 21

2

d
u u u

HL Ldt
    

It follows that 

2 2

2 21
, (0) 0,

2

d
u u u

L Ldt
   

And since  
2(0) 0,u L   Grownwall‘s inequality implies that  

2( ) 0u t L   for all  0, 0.t sou   
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In a similar way, we get continuous dependence of weak solutions on 

the data. If  iu  is the weak solution with data  , 1,2,i if g for i  then 

there is a constant C independent of the data such that  

1
02( , ;2

1 2 1 2(0, , ) )
O T H

u u L T L u u L    

 2 1 2

1 2 1 2( , ; )C f f L O T H g g L     

12.5.5. Regularity of weak solutions, For operators with smooth 

coefficients on smooth domains with smooth data F,g, one can obtain 

regularity results for weak solutions by deriving energy estimates for 

higher-order derivatives of the approximate Galerkin solutions  Nu  and 

taking the limit as  .N   A repeated application of this procedure, 

and the Sobolev theorem, implies, from the Sobolev embedding 

theorem, that the weak solutions constructed above are smooth, 

classifcal solutions if the data satisfy appropriate compatibility 

relations.  

12.8 A SEMILINEAR HEAT EQUATION 
 

The Galerkin method is not restricted to linear or scalar equations. In 

this section, we briefly discuss it application to a Semilinear heat 

equation. For more information and examples of the application 

Galerkin methods to nonlinear evolutionary PDEs. 

Parabolic IBVP for u(x,t) 

( ) ( , ),tu u f u in O T     

(12,28) u=0     
 

( , ),

( ,0) ( ) 0 ,

on O T

u x g x on



 
 

We suppose, for simplicity, that  

(12,29)     
2 1

0

( )
p

k

k

k

f u c u
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Is a polynomial of odd degree  2 1 1.p    We also assume that the 

coefficient  2 1 0c p    of the highest degree term is positive. We then 

have the following global existence result 

Theorem 12.8 Let T>0. For every  
2 ( ),g L  there is a unique weak 

solution 

 2 2 1 2 2

0[0, ]; ( ) ( , ; ( ) (0, ; ( )).p pu C T L L O T H L T L       

Of (12,28)-(12.29). 

The proof follows the standard Galerkin method for a  parabolic PDE. 

We will  not give it in detail, but we comment on the main new 

difficulty that arises as a result of the nonlinearity. 

Toi obtain the basic a priori energy estimate, we multiplying the PDE 

by u, 

221
( ) ( ),

2 t

u Du uf u div uDu
 

   
 

 

And integrate the result over   , using the divergence theorem and the 

boundary 

Condition, which gives 

2 2

2 21
( ) 0.

2 L L

d
u Du uf u dx

dt


    

Since  ( )uf u  is an every polynomial of degree 2p with positive leading 

order coefficient and the measure    is finite, there are constants  

0, 0A C   such that  

2

2 ( ) .p

pA u L uf u dx C


   

We therefore have that 

(12.30)  2 2 2

2
sup 2 2 2

[ , ] 0 0 2

1 1
.

2 2
L L

PT T

O T Lp
u Du dt A u dt CT g      

Note that if 
2 pu L is finite then 

2 pu L  is finite for  
'(2 ) ,q p , since 

then  (2 1) 2q p p and   
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(2 1)
2( ) .

q p
q pf u dx A u dx C A u L C



 
      

Thus, in giving a weak formulation of PDE, we want to use test 

functions 

1 2

0( ) ( )pH L      

So that both  2 2( , ) ( ( ), )
L L

Du D and f u v  are well-defined. 

The Galerkin approximations   Nu  take values in a finite dimensional 

subspace      1 2

0

p

NE H L     and satisfy 

t N NuN u P    

Where PN is the orthogonal projection onto 2( )NE in L  .These 

approximations satisfy the same estimates as the a priori estimates in 

(12.30). The Galerkin ODEs  have a unique local solution since the 

nonlinear terms are Lipschitz continuous functions of  .Nu  Moreover, 

in view of the a priori estimates, the local solutions remain bounded, 

and therefore they exist globally for  0 .t   

Since the estimates  hold uniformly in N, we extract a subsequence that  

converges weakly (or weak-star)  Nu u in the appropriate topologies 

to a limiting function 

 
2 2 1 2 2

0(0, ; ) ( , ; ) ( , ; ).p pu L T L L O T H L O T L    

Moreover, from the equation 

 
2 1 1(0, ; ) ( , ; ) ( , ; )q q q

tu L T H L O T H L O T L     

Where 
 

'(2 )q p  is the Holder conjugate of 2p. 

In order to prove that u is a solution PDE, however, we have to show 

that  

 
( ) ( )Nf u f u  

PARABOLIC EQUATIONS 
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In an appropriate sense. This is not immediately clear because of the 

lack of weak 

Continuity of nonlinear functions; in general, even if 
 

( )Nf u f


   

converges, we may not have 
 

( ).f f u


  To show (12)), we use the 

compactness Theorem 12.9 stated below. This theorem and the weak 

convergence properties found above imply that there is a subsequence 

of approximate solutions such that 

Nu u  strongly in 
 

2 2(0, ; ).L T L  

This is equivalent to strong 
 

2L  convergence on 
 

(0, ).T  By the 

Riesz-Fischer theorem, we can therefore extract a subsequence so that 
 

( , ) ( , )Nu x t u x t  pointwise a.e. on    (0, ).T     

Using the dominated convergence theorem and the uniform bounds on 

the approximate solutions, we find that for every  1 2

0( ) ( )pH L      

 2 2( ( ( )), ( ( ( )), )N L L
f u t f u t v   

Pointwise, a.e. on  [0, ].T  

Finally, we state the compactness theorem used here 

THEOREM 12.9.  Suppose that   X Y Z   are branch spaces, 

where X , Z are reflective and X is compactly embedded in Y 1 Let 

.p   If the functions 
 
(0, )T X  are such that   Nu  is 

uniformly bounded in 
 

(0, ; ),pL T Z  and    Ntu  is uniformly 

bounded in Nu u  and  is uniformly bounded in 
 

(0, ; ),pL T Z  then 

there is a subsequence that converges strongly in 
 

2 (0, ; ).L T Y  

The proof of this theorem is based on Ehrling‘s lemma. 

LEMMA 12.10. Suppose that   X Y Z   are Banach spaces, where 

X is compactly embedded in Y. For any 
 

0  there exists a constant 

C    such that 

  
    n n nY X Z

u u n u   
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PROOF. If not, there exists   nN. since  Nu  is bounded in X and X 

is complicity embedded in Y, there is  a sequence, which we still 

donated by   Nu  that  converges strongly in Y, to u, say. Then  
 

 nu y    is bounded and therefore 
 

0u   from (12.00). However, 

(12.00) also implies that 
 nu y c  for every 

 
,n R  which is a 

contradiction. 

If we do not impose a sign condition on the nonlinearity, then solutions 

may ‗blow up‘ in finite time, as for the ODE  3,tu u  and then we do 

not get global existence. 

EXAMPLE 12.11. Consider the following one-dimensional IBVP       

for 
 

( , )u x t in 0 1, 0 :x t    

 
3.t xxu u u    

(6.33) 

 

(0, ) (1, ) 0.

( ,0) ( ).

u t u t

u x g x

  
 

Suppose that  ( , )u x t   is smooth solution and let 

 

1

0
( ) ( , ) sin ( , )c t u x t x dx   

A SEMILINEAR HEAT EQUATION 

Denote the first Fourier coefficient of  u  . Multiplying the PDE by          

sin( , )x , integrating with respect to x over (0,1), and using Green‘s 

formula to write  

1 1
1 2 2

0
0 0

( , )sin( , ) [ sin( , ) cos( ) ] ( , )sin( , ) .xx xu x t x dx u x ru x u x t x dx c          

Nu u  

We get that 

  

1
2 3

0
sin( , ) .

dc
c u x dx

dt
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Now suppose that  ( ) 0.g x    Then the  maximum principle implies 

that   ( , ) 0u x t   for all  0 1, 0.x t    It then follows from Holder 

inequality that  

  
1 1

3 2/3

0 0
sin( , ) [ sin( , )u x dx u x dx    

     
1/3 2/3

1 1
3

0 0
sin( , ) sin( , )u x dx x dx     

  
2/3 1/3

1
3

0

2
sin( , )u x dx



 
  
 

  

Hence 

  
2

1
3 3

0
sin( , ) .

4
u x dx c


   

and therefore  

   2 31
.

4

dc
c c

dt


 
   

 
 

Thus, if c(0) > 2, Gronwall‘s inequality implies that 

  ( ) ( )c t y t  

Where y(t) is the solution of the ODE 

  2 31

4

dy
y y

dt


 
   

 
 

This solution is given explicitly by  

   
22 ( .)

2

1 t t

y t
e  




 

This solution approaches infinity as   
.t t  where, with   (0) (0)y c , 

  . 2 2

1 (0)
log

(0) 4

c
t

c



 

Therefore no smooth solution of (12.100) can exist beyond  .t t  . 

The argument used in the previos example does not prove that c(t) 

blows up at .t t  It is conceivable that the solution loses smoothness at 
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an earlier time – for example, because another Fourier coefficient 

blows up first – thereby invalidating the argument that c(t) blows up. 

We only get a sharp result if the quantity proven to blows up is a 

‗controlling norm‘, meaning that local smooth solutions exist so long 

as the controlling norm,‘ meaning that local smooth solutions exist so 

long as the   controlling norm remains finite. 

EXAMPLE 12.12. Beale-Kato-Majda (1984) proved that solutions of 

the incompressible euler equations from fluid mechanics in three-space 

dimensions remain smooth unless 

 3

.
0

( ) ( )
t

dsx s L r as t t    

Where denotes the vorticity (the curl of the fluid velocity u(x,t)). 

Thus, the  
1 3 3(0, ; ( : )))L t L R

norm of    is a controlling norm for the 

three dimentional incompressible Euler equations. It is open question 

whether or not this norm can blow up in finite time 

12.9 THE NAVIER-STOKES EQUATION 
 

Leray (1934) used a galerkin method to prove the global existence of 

weak solutions of the incompressible Navier-Stokes equations. In the 

case of three space dimensions, Leray‘s result has not been essentially 

improved upon since then, and the smoothness and uniqueness of these 

weak solutions remains an open question. We briefly describe leray‘s 

result here and indicate the main ideas of its proof. For a detailed 

discussions, see e.g.       . 

The incompressible Navier-Stokes equations for the velocity    

( , ) nu x t R  and pressure  ( , )p x t R of a viscous fluid flowing in n 

space dimensions. Where n=2,3. And subject to an external body force 

( , ) nf x t R  is the following nonlinear system of PDEs: 

 .

1 1

n n

it j j i i j j i i

j j

u u u p v u f
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1

0.
n

j j

j

u


   

The analysis described here is based on treating the Navier-Stokes 

equations as a nonlinear perturbation of the linear parabolic Stokes 

equations 

 . ,tu u u p f     

(6.35) div u=0. 

These equations apply to low –Reynolds number (high non 

dimensionalized viscosity) flows, which is the typical regime for large-

scale flows (e.g. airplanes or oceans). The nonlinearity of the Euler 

equations makes them difficult to analyze, especially in three space 

dimensions.5 Moreover, the higher-order viscous terms  v u  in the 

Navier-Stokes equation is a singular perturbation of the Euler 

equations, and the limiting behavior of the Navier-Stokes equations as  

0v  is a subtle issue. 

Check your progress 

1. Prove: Suppose that    are Banach spaces, where X 

is compactly embedded in Y. For any 
 

 there exists a 

constant    such that 

  
     

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

--------- 

12.10 LET US SUM UP 
 

In this unit we have discussed about heat equation, general 

second order parabolic PDE, Definition of weak solutions, the 

Galerkin approximation.  

2
0 0

( , ) , , , .
T T

L
uNt dt uNt Nt ut dt        

X Y Z 

0

C

n n nY X Z
u u n u 
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Moreover, the boundedness of a in 6.12 implies similarly that  

2
0 0

( ( ), ( ) ; ) ( ( ) ; ) .
T T

L
a uN t t w t dt a u t w t dt    

It therefore follows that u satisfies 

(6.26)   
0 0

[ , ( , ; )] , .
T T

tu w a u w t dt f w dt     

Since this holds for every  ( , ),cC O T  we have 

(6.27)   , ( , ; ) ,tu w a u w t f w   

Point wise a,e, in (O,T) for every  .Mw E  Moreover ,since 

M
M N

E


 

Is dense in  1

0,H this equation holds for every  1

0,w H  and therefore u 

satisfies (6.13). 

Finally, to sow that the limit satisfies the initial condition (0) ,u g we 

use the integration by parts formula. Theorem (6.42) with ([0, ])C T  

such that (0) 1   and ( ) 0T   to get 

0 0
, ( ), , .

T T

tu w dt u o w t u w     

Thus, using (6.27), we have  

0 0
( ), , [ , ( , ; )] .

T T

tu o w u w f w a u w t dt      

Similarly, for Galerkin approximation with ,Mw E and N M we get   

0 0
, , [ , ( , ; )] .

T T

t N Ng w u w f w a u w t dt      

Taking the limit of this equation as  ,N  when the right-hand side 

converges to the right-hand side of the prevous eqation , we find that 

( ), ,u o w g w  for every ,Mw E  which implies that (0) .u g  

the heat equation (12.1)  t
u u f    

The heat equation t
u u f   . For every  
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  2 10, ;f L T H    and  1

0
g H   there is a unique 

weak solution. Galerkin method which uses a space EN of 

piecewise polynomial functions that are supported on 

simples, or some other kind of element.  

Unlike the eigenfunctions of the Laplacian, finite-

element basis functions, which are supported on a small 

number of adjacent elements, are straightforward to 

construct explicitly. 

12.11 KEYWORDS 
 

1.The heat equation is t
u u f    

2.For every    2 10, ;f L T H    and  1

0
g H   there is a unique 

weak solution . 

3.The basic idea of the existence  proof is to approximate 

   1

0
: 0,u T H   by function  : 0,

N N
u T E  that take values in 

a finite-dimensional subspace  1

0N
E H  of  dimension N. 

4.Parabolic PDE has to be supplemented by suitable initial and 

boundary conditions to give a well-posed problem with a unique 

solution. 

12.12 QUESTIONS FOR REVIEW 
 

1. Discuss about general second order Parabolic PDE 

2. Discuss about weak solutions 

3. Discuss about Galekin approximation 
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PROGRESS 
 

1. See section 12.4 

2. See section 12.9 

3. See section 12.9 
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UNIT-13 SOLUTION OF WAVE 

EQUATION 

 

STRUTURE 

13.0 Objective 

13.1 Introduction 

13.2 Solution of 1-D wave equation 

13.3 Kirchoff‘s formula 

13.4 Solution of 2-D wave equation 

13.5 Solution of wave equation for n ≥3 

13.5.1.1 Solution for odd n 

13.5.1.2 Solution for even n 

13.6 Energy Methods 

13.7 Let us sum up 

13.8 Key words 

13.9 Questions for review 

13.10 Suggested Readings and References 

13.11 Answers to check your progress 

13.0 OBJECTIVE 
 

By this end of this chapter we will learn and understand about Solution 

of 1-D wave equation, Kirchoff‘s formula, Solution of 2-D wave 

equation, Solution of wave equation for 3n  , Solution for odd n, 

Solution for even n, Solution of Non-homogeneous wave equation and 

energy methods. 

13.1 INTRODUCTION 

In this lesson, we seek the solution of wave equation. The homogeneous 

wave equation 
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Where      ∈       is open and  

  . 

The non-homogeneous wave equation. 

                      

Where     ,   )    is a prescribed function. 

13.2 SOLUTION OF 1-D WAVE 

EQUATION 

 

First we find the solution of wave equation in the one dimensional case. 

Consider the initial value problem 

         

                       (   )                                                              ( )  

                   

         *   )                                                                 ( )                             

where g and h are prescribed functions. Factorizing equation (1) 

 

.
 

  
 

 

  
/ .

 

  
 

 

  
/                                 

 (3) 

Let 

 (   )     .
 

  
 

 

  
/  (   )                              

 (4) 

From (3) and (4) 

.
 

  
 

 

  
/   (   )                ∈        

υ_t+υ_x=0                                (5)  

which is a transport equation with constant coefficients whose solution is 

  (   )   (   )                      (6) 

Where 

 ( )          (   )                                 (7) 
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Using equation (6) in equation (4) 

        (   )       (   ) 

  (   ) 

This is a non-homogeneous transport equation whose solution is 

 (   )   ∫  
 

 
(       )    (   )  

Where 

        ( )   (   ) 

   or 

 (   )    ∫ 

 

 

(      )    (   ) 

Changing the variable x +t - 2s = y 

 (   )   
 

 
 ∫  

   

   

( )    (   ) 

Using equation (2) 

g (x) =b(x ) 

so       (   )    (   )   

 
 ∫  

   

   
( )   

To find a (x): We have 

   (   )     (   )    (   ) 

 ( )      ( )    ( )                   (      ( ) 

 (   )   (   )  
 

 
∫ ⌊ ( )    ( )⌋  

   

   

 

or 

 (   )  
 

 
, (   )   (   )-  

 

 
∫  ( )                          
   

   

 (8) 

This is required solution of wave equation. Equation (8) is known as D-

Alembert‘s formula. 
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Note. The general solution of 1-D wave equation 

(     )(     )     

Is the sum of general solution of                              

i.e.  (   )    (   )   (   ) 

To find the solution of wave equation over   (   )                  

Lemma. 

Def. We define 

  (     )   ∮  (   )  ( )

  (   )

 

 (     )   ∮  ( )    ( )

  (   )

 

  (     )   ∮  ( )    ( )

  (   )

 

Lemma. Fix x∈R^n,satisfying 

               (   )                (1)   

 

                   *   +       (2) 

then 

      ∈   (  
̅̅ ̅̅  ,   ))     

           

 
             (   )                                             (3) 

                      *   +     (4) 

Equation (3) is known as Euler Poisson Darboux Equation. 

Proof. We know   

 (     )         ∮   (   )  ( )

  (   )

 

Shifting to unit Ball B (0,1) 
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 (     )                ∮  (    )  ( )

  (   )

 

Differentiating w.r.t.   r 

      ∮   (    )     ( )

  (   )

 

 

 ∮   ( ) 
   

 
    ( )

  (   )

 

 ∮   ( )      ( )

  (   )

 

(where   is unit outward normal). 

 ∮
  

  
  (   )

   ( ) 

 
 

  ( )      ∮
  

  
  (   )

   ( ) 

 
 

  ( )      ∮   

 (   )

                   (                     ) 

 

 
 ∮      

 (   )

 

Hence 

  (     )   
 

 
∮   
 (   )

         

 (5) 

Again differentiating w.r.t. r 

   (     )   
 

  ( )

 

  
*

 

    
 ∮        

 (   )

  +  
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  ( )  
 ∮        

 

  ( )    
 ∮      

  (   ) (   )

 

(
 

 
  ) ∮       

 (   )

   ∮       

 (   )

                                                                   ( )    

From equation (5) and (6), we observe that 

  
   

    (      )    

  
   

        (
 

 
  )    

 

 
 

 
  (   ) 

So 

 ∈   (  
̅̅ ̅̅ ̅  ,   )) 

By equation (5) 

  (      )  
 

 
 ∮      

 (   )

 

 
 

 
 ∮       

 (   )

 

 
 

  ( )    
 ∮     

 (   )

    

 

          
 

  ( )
 ∮    

 (   )

    

Differentiating w.r.t. r 
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         (   )          
 

  ( )
 
 

  
* ∮    

 (   )

   + 

 
 

  ( )
∮       

  (   )

 

     ∮    

  (   )

    

or 

     (   )

 
           (7) 

Which is required equation. 

Also           *   + 

∮  (   )

  (   )

   ( )   ∮  ( )

  (   )

   ( ) 

Dividing by   ( )     

 (   )   ( ) 

Similarly we can show 

  (   )   ( )            *   + 

Check Your Progress 

1. Explain about D-Alembert‘s formula. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- 

13.3 KIRCHOFF’S FORMULA 

Consider the initial value problem 

                       (   ) 

 ( )    ( )               *   + 

 

Sol. First we prove that 
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 ̃    ̃           (   ) 

 ̃   ̃   ̃   ̃           *   + 

 ̃                  *   +  (   )     

 (4) 

Where  ̃        ̃         ̃       

We know Euler Poisson Darboux Equation for n=3 is 

        
 

 
               (   )    

  (5) 

                          *   +    

  (6) 

 ̅          

  *    
 

 
  +                    (        ) 

           

 (      )  

 ( ̃ )  

  ̃          (7) 

So  ̃ satisfies the 1-D wave equation. 

Also  ̃(r,0) = rU(r,0) 

 =rG(r) 

 = ̃ 

Similarly  ̃ (   )    ̃( ) 

Hence, by D Alembert‘s formula, we have       r  

  ̃ (     )  
 

 
[ ̃ (   )   ̃(   )]  

 

 
 ∫  ̃

   

   
( )     

 (8) 

Now 

  (   )     
    

 (     )                            (       ) 
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 ̃(     )

 
 

   
   

,[
 ̃ (   )    ̃ (   )

  
]  

 

  
 ∫  ̃ ( )   

   

   

- 

  ̃ ( )    ̃ ( ) 

 
 

  
*  ∮     

  (   )

+    ∮      

  (   )

 

                                                    (9) 

But   

 
 

  
*  ∮    

  (   )

+   
 

  
* ∮  (    )  ( )

  (   )

+ 

 

               ∮   (          ( )
  (   )

 

 

              ∮   ( ) .
   

 
/     ( )

  (   )
 

so 

 (   )  ∮      ∮   ( )(   )  ( )

  (   )  (   )

  ∮     ( )  ( )

  (   )

 

 

  ∮ ,     ( )     ( )(   )  ( )

  (   )

 

                                              10) 

This is required solution. Equation (10) is known as kirchoff‘s formula. 

Check Your Progress 

2. Explain about Kirchoff‘s formula. 
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-----------------------------------------------------------------------------------

-----------------------------------------------------------------------------------

----------------------------------------------------------------------------------- 

13.4 SOLUTION OF 2-D WAVE 

EQUATION 

 

Now we find the solution of wave equation by the method of descent. 

Consider initial value problem 

                      (   ) 

                      *   + 

Sol. We regard it as a problem for n = 3 in which the third spatial 

variable    does not appear. Let us write 

 (           )      (       ) 

So equation (1) and (2) are modified to 

 ̅     ̅          
 
 (   ) 

 ̅      ̅   ̅         *   + 

Where  

 (          )      (      ) 

 ̅(          )      (      ) 

     (     ) ∈          ̅  ∈    

The solution of initial value problem defined in equation (4) and (5) is 

Given by kirchoff‘s formula i.e. 

 ̅( ̅  )  
 

  
*  ∮      

  (   )

+     ∮      

  (   )

 

Where   (   ) denotes the ball in    with centre   and radius t>0 and d 

  denotes the two- dimensional surface measure on   (   ). 

Now 
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∮         
 

    
  (   )

 ∫     

  (   )

 

 
 

    
 ∫  ( )[  (

  

  
)

 

]

  ⁄

  

 (   )

 

Where factor ‗2‘ is taken as  (   ) consists of two hemisphere and 

  ( )  √   |   |  is the parametric equation of any  ∈  (   ) 

∮       
 

    
  (   )

 ∫  ( )
 

√   |   | 
  

 (   )

 

 
 

 
*

 

   
 ∫  ( )

 

√   |   | 
  

 (   )

 + 

 

 
 

 
∮

 ( )

√   |   | 
  

 (   )

 

Similarly, 

∫      

 (   )

 
 

 
∮

 ( )

√   |   | 
  

 (   )

 

Using (7) and (8) in equation (6) 

 (   )  
 

 

 

  
(   ∫

 ( )

√   |   | 
   )

 (   )

)  

 
  

 
 ∮

 ( )

√   |   | 
  

 (   )

 

 

  
(  ∮

 ( )

√   |   | 
  

 (   )

)   
 

  
( ∮

 (    )

√  | | 
  

 (   )

) 

 ∮
 (    )

√  | | 
    

 (   )

∮
   (    ) 

√  | | 
   

 (   )
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  ∮
 ( )  

√   |   | 

 (   )

  ∮
  ( ) (   )  

√   |   | 
 

 (   )

 

Hence equation (9) gives 

  

 (   )  
 

 
∮

 ( )  

√   |   | 

 (   )

 
 

 
∮

  ( ) (   )  

√   |   | 
 

 (   )

 

 

              
  

 
∮  ( )  

√   |   | 
 (   )

 

 (   )   
 

 
∮    ( )    ( )   ( ) (   )

√   |   | 
  

 (   )
 ---------------(10) 

Where  ∈    Eq. (10) is required solution Equation (10) is known as  

Poisson’s Formula. 

Check your progress 

3. Explain about Poisson‘s formula. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

13.5 SOLUTION OF WAVE EQUATION 

FOR     

To find the solution of wave equation for n>3 we derive some identities. 

Suppose                            

I. 
  

   .
 

 

 

  
 /

   

.      ( )/  .
 

 

 

  
 /

 

.     

  
/ 

II. .
 

 

 

  
 /

   

.      ( )/   ∑    
         

    
   ( )

    

Where 

  
 (             )                      

III.   
         (    ) 

Proof 



Notes 

170 

I. We prove it by induction. For k=1. We have to show  

  

   
 (  ( ))   (

 

 
 
 

  
) (   

  

  
) 

  
 

  
 [   ( )   ( )] 

    ( )     ( ) 

 
 

 
,    ( )      ( )- 

 
 

 

 

  
,    ( )-         

Suppose result holds for k. So 

  

   
(
 

 

 

  
 )

   

.      ( )/  (
 

 

 

  
 )

 

(   
  

  
) 

We have to prove for k+1 i.e 

  

   
(
 

 

 

  
 )

   

.      ( )/  (
 

 

 

  
 )

   

(     
  

  
) 

Now 

  

   
(
 

 

 

  
 )

 

.      ( )/ 

 
  

   
(
 

 

 

  
 )

   

[
 

 

 

  
*      ( )+] 

 

 
  

   
(
 

 

 

  
 )

   

[
 

 
(    )    ( )       ( )] 

 

 
  

   
(
 

 

 

  
 )

   

[(    )      ( )       {  ( )}]  (      ( )) 

 (    ) (
 

 

 

  
 )

 

,     ( )-  (
 

 

 

  
 )

 

[   
 

  
*   +]  

 (    ) (
 

 

 

  
 )

 

,     ( )-  (
 

 

 

  
 )

 

[             ]

 (
 

 

 

  
 )

 

[(    )             ( )] 
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                          .
 

 

 

  
 /

  

 
[(    )               ( )] 

 (
 

 

 

  
 )

  

 
 
 

  
 ,       - 

 (
 

 

 

  
 )

   

 ,       - 

Hence the result holds for k + 1. 

So result is true for all k = 1,2,…. 

Def. Assume n is odd ,say          (   )           

 ̃(   )  (
 

 

 

  
 )

   

.      (     )/  

 ̃(   )  (
 

 

 

  
 )

   

.      (   )/ 

 ̃(   )  (
 

 

 

  
 )

   

.      (   )/ 

 ̃(   )   ̃( )  ̃ (   )   ̃( ) 

Lemma.  ̃ satisfies the 1-D wave equation. 

 ̃    ̃                            (   )    

 ̃   ̃       ̃   ̃                      *   +   

 ̃       *   +  (   ) 

Proof.        .
  

   /.
 

 
 
 

  
/
   

(      ) 

  (
 

 
 
 

  
)
 

(   
  

  
)    (             ) 

  (
 

 
 
 

  
)
   

[
 

 
 
 

  
 (   

  

  
)]     

  (
 

 
 
 

  
)
   

[
  

 
                  ] 

   (
 

 
 
 

  
)
   

[                     ] 

  (
 

 
 
 

  
)
   

[      *     
(   )

 
  +] 
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  (
 

 
 
 

  
)
   

,         - 

  ̃   

Also 

 ̃  (
 

 
 
 

  
)
   

(       ) 

  

∑  
     

 

   

   
                (              ) 

 ̃(   )     

By definition  ̃(   )   ̃ 

 ̃(   )   ̃                        *   + 

Hence the lemma. 

13.5.1. Solution for odd n(   ) 

Consider the initial value problem 

                     (   )                                                                  ( )  

                                *   )                                                  ( )  

Solution. By lemma,  ̃ satisfies the 1 – D wave equation and the initial 

condition. Therefore, by D Alembert‘s formula, on half-line       

 ̃(   )  
 

 
* ̃(   )   ̃(   )-

 
 

 
 ∫  ̃ ( )   

   

   

                                          ( )   

for  all  ∈       

 ̃(   )  (
 

 
 
 

  
)
   

.       (      )/ 

      
        

   
  

  
   

 
 ̃(   )

  
  

    ( ) 
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Taking limit as     

  
   

 ̃(   )

  
  

   
   

 (     )     
   

∮  ( )   ( )

  (   )

 

   (   ) 

So 

 (   )   
 

  
   

   
[
 ̃(   )   ̃(   )

  
 

 

  
 ∫  ̃( )  

   

   

 

 
 

  
 
[ ̃ ( )   ̃ ( )] 

Since        

  
            

      (   )                        (       ) 

    (   ) 

Hence, 

 (   )   
 

   
[
 

  
(
 

 

 

  
 )

   

 

(      ∮    

  (   )

) 

 (
 

 

 

  
)

   

 

(      ∮      

  (   )

)+ 

Is required solution for odd n. 

Note. Putting      we obtain kirschoff‘s formula. 

13.5.2 Solution for even n 

Suppose that n is even i.e.                     

We again use the method of Descent. 

Consider the initial value problem 

                     (   )                                                                  ( )  

                                *   )                                                  ( )  

Sol. Since n is even, n+1 is odd. 
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Suppose 

 ̅(              )      (            )      

 (3) 

is the solution of wave equation in      (   )     

 ̅     ̅                 (   )       

 (4) 

With initial condition. 

   ̅   ̅               ̅   ̅           *   )    

 (5) 

Where 

 ̅(            )      (          ) 

 ̅(            )      (          ) 

The solution of equation (4) subject to (5) is  

 ̅( ̅  )   
 

    
,
 

  
(
 

 

 

  
)

   

 

(      ∮  ̅  ̅

  ̅( ̅  )

)

 (
 

 

 

  
)

   

 

(      ∮  ̅  ̅

  ̅( ̅  )

)- 

Where  ̅( ̅  ) denotes the ball in       with centre  ̅ and radius t and  

  ̅ denotes the n-dimensional surface measure on   ̅( ̅  ) 

Now 

∮  ̅  ̅

  ̅( ̅̅̅  )

  
 

(   )  (   )  
 ∫  ( ),  |  ( )| -   ⁄

 (   )

   

Where the factor ‗2 ‗is due to the fact that the surface area 

consists of 

 two hemispheres and   ̅( ̅  ) (      ) has the equation  

 ( )  √   |   |    ∈  (   )      ̅( ̅  ) (      ) is the 

graph of –  ( )  
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∮  ̅  ̅

  ̅( ̅  )

  
 

(   )  (   )  
 ∫  ( ) [

 

√   |   | 
]

 (   )

   

 
  ( ) 

(   )  (   )
∮

 ( )  

√   |   | 
  (   )

 

    Similarly 

∮  ̅  ̅

  ̅( ̅  )

  
 

(   )  (   )
 ∫

 ( )

√   |   | 
 (   )

   

Using equation (7) and (8) in equation (6) 

 (   )

 
 

    
 

 ( )

(   )  (   )
*
 

  
(
 

 

 

  
)

   
 

(   ∮
   

√   |   | 
 (   )

)

  
 

  
(
 

 

 

  
)

   
 

(   ∮
    

   |   | 
∫

 (   )

)+ 

But 

 
 ( )

    (   )  (   )
  

 

     (   ) 
 

 

 
 

   
 (   ) 

Hence 

 (   )  
 

  
*
 

  
(
 

 

 

  
)

   

 

(  ∮
   

√   |   | 
 (   )

)

 (
 

 

 

  
)

   

 

(  ∮
    

√   |   | 
 (   )

)+ 

Is required solution, where n is even. 

Note. For                                       

Consider the initial value problem 
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 (   )                                                                                 ( ) 

                                * 

  +                                                                               ( )  

Where  ∈  ,  ⁄ -  (   (   ))          ,  ⁄ - denotes the greatest 

integer function, then solution of equation (1) subject to (2) is 

 (   )  ∫ (     )                             ∈     

 

 

                                                      ( ) 

Where  (     )is a solution of  

   (     )     (     )               (   )  

 (     )        (     )   (     )      *   +                                                  

(4) 

Sol. To show that equation (3) is a solution of equation (1) subject to (2)  

we need to show 

(i)  ∈   (   ,   ) 

(ii)          (   )           (   ) 

(iii) (   ) (    )
    (   )    

  
(   )  (    )

   (   )    

For each point    ∈   . 

Proof. (i) 0
 

 
1 denotes the greatest integer function. 

If n is even 0
 

 
1+1=

   

 
   

   

 
 

If n is odd 0
 

 
1    

 

 
   

From previous article, 

 (     ) ∈   (   (   ))                      
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so  ∈   (   ,   )) 

(ii)    

 (   )       ∫  (     )   

 

 

 

Differentiating w.r.t  t 

  (   )      ∫    (     )   

 

 

  (     ) 

 ∫   (     )                                     (    )

 

 

  

Again differentiating w.r.t.     t 

   (   )  ∫    (     )     (     )                  

 

 

 

∫    (     )     (     )                                                       (    )                                       ( )
 

 

 

 

  (   )   ∫   (     )  

 

 

 

  ∫    (     )  

 

 

                                                            (    )                                                      ( ) 

   (   )    (   )   ∫,    (     )    (     )-    (   )

 

 

 

  (   ) 

(iii) Also  (   )    

  (   )    

The solution of non-homogeneous wave equation is given by equation 

(3) 

Exercise: 

1.  Find the solution of  
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                     (   ) 

                             *   +          

Is given by D Alembert‘s formula.  (   )   
 

 
0 (   )   (   )  

 

 
∫   ( )  
   

   
1 

Hence, 

 (     )  
 

 
∫   (   )  

     

     

 

(Replacing t by t-s) 

Hence  

 (   )  
 

 
∫ ∫   (   )      

     

     

 

 

 

Replacing t-s by s , We find 

 (   )   ∫ ∫   (     )  

   

   

 

 

    

Is the required solution. 

Check your progress 

2. Find the solution of wave equation for n>3 and derive some identities. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------- 

13.6 ENERGY METHOD 
 

Uniqueness of solution 

Let       be a bounded, open set with a smooth boundary    and  

    (   - 

    ̅                 

There exists at most one function  ∈   ( ̅ ) of the initial value 

problem. 

                                                                                              ( ) 
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                   *   +                                                   ( ) 

Proof. Let  ̅ be another solution of equation (1). We take 

 (   )       ̅ 

So 

               

                           *   + 

Define  

 ( )   
 

 
∫,  

  |  | -                 

 

 

Differentiating w.r.t. t 

 ( )   ∫,            -  

 

̇

 

(Integrating the 2
nd

 integral by parts) 

 ∫,            -  

 

 ∫       ̂   

  

  

                ∫    
,      -            (       ) 

                =0                                       (by 3)  

   So e(t) = constant for all t. 

      ( )  
 

 
∫,  

 (   )  |  (   )| -  

 

 

=0. 

So    e(t) is zero for all t. 

 

i.e.                  

 

Since          *   + 

     ̅          

   ̅       

Def. Let  ∈                     
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               (   ) 

 

Fix   ∈              

 

Consider the set 

  *(   )|             |    |      + 

Which defines a cone. 

Theorem. If 

           (     )  *   +                       

Proof. We define 

 ( )  
 

 
∫ ,  

 (   )  |  (   )| -  

 (       )

                          

                         

 ( )  
 

 
∫ ,     (   )  (      )-  

 (       )

 

 
 

 
 ∫ ,  

  |  | -                       (                        )

 (       )

 

 

Integrating by parts (2
nd

 term of 1
st
 integral) 

 ∫ ,           )-  

 (       )

 ∫
  

  
      

 

 
 ∫ ,  

  |  | -  

  (       )  (       )

 

 

   ∫  [   

  

  
 

 

 
  (       )

  
  

 

 
|  | ]    

 ∫  ,   
  |  |  

 

 
  

  
 

 
|  | ]   

  (       )

 

 

(by Cauding Schwartz Inequality) 
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So e(t) is a decreasing function of t 

 ( )   ( ) 

     ( )     

 ( )    

hence e(t)=0  (  ( )                             ) 

                 

                        

Hence u=0 within c              (            ) 

 

13.7 LET US SUM UP 

 

In this unit we have discussed Solution of 1-D wave equation, Kirchoff‘s 

formula, Solution of 2-D wave equation, Solution of wave equation for 

3n  , Solution for odd n, Solution for even n, Solution of Non-

homogeneous wave equation and energy methods. The homogeneous 

wave equation. D-Alembert‘s formula, Poisson‘s Formula, Solution for 

odd n(   ), solution for even n, If            (     )  

*   +                      . 

 

13.8 KEY WORDS 

1. The general solution of 1-D wave equation 

(     )(     )     

2. Euler Poisson  Darboux equation is            

 
             

(   ) 

3. Poisson‘s formula is  (   )   
 

 
∮    ( )    ( )   ( ) (   )

√   |   | 
  

 (   )
 

4. Uniqueness of solution 

Let       be a bounded, open set with a smooth boundary    

and     (   - 

    ̅                 

13.9 QUESTION FOR REVIEW 
1. Find the solution of  
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        (   )        (   ) 

                              *   + 

Ans.  (   )  
 

  
∫

 (    |   |)

|   | (   )
    

2. Discuss about solution of 1-D wave equation 

3. Discuss about solution of 2-D wave equation 

4. Discuss about non homogeneous wav equation and energy methods. 
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1.  See section 13.2 

2. See section 13.3 

3. See section 13.4 
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UNIT-14 SEPARATION OF 

VARIABLES 

STRUTURE 

14.0 Objective 

14.1    Introduction 

14.2  Separation of variables 

14.3 Similarity solutions 

14.4 Connecting non-linear partial differential equations to linear 

partial differential equations 

 14.4.1 Cole-Hopf transformation 

 14.4.2 Potential function 

14.5 Transform methods 

14.5.1 Fourier Transforms 

14.5.2 Laplace Transforms 

14.6 Let us um up 

14.7 Keyword 

14.8 Questions for review 

14.9 Suggestive readings & References 

14.10 Answers to check your progress 

14.0 OBJECTIVE 
 

In this unit we will learn understand about Separation of variable, 

Similarity solutions, Connecting non-linear partial differential equations 

to linear partial differential equations, Cole-Hopf transformation, Fourier 

Transforms, Laplace Transforms. 
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14.1 INTRODUCTION 

There are several other techniques to solve the linear and non- linear 

partial differential equations. e.g. Separation of variables, Similarity 

solutions, Connecting non-linear partial differential equations to 

linear partial differential equations, Transform methods. Here we will 

discuss them. 

14.2 SEPARATION OF VARIABLES 
 

In this method, we assume a solution given by sum or product of 

undetermined functions and form ordinary differential equations, which 

are solved.  

This technique is well understood by examples. 

Exp. Consider the boundary value problem in heat equation 

   ,tu u O in U O          (1) 

                 ,     )                                     (2)  

           *    +         

Where               iven. 

Sol. Let the solution of equ. (1) be given by 

 (   )    ( ) ( )                  ∈                           (3) 

From (1) and (3) 

  ( )      ( )     

Dividing by  ( ) ( )  
  ( )

 ( )
  

  ( )

 ( )
                                     (4)         

L.H.S. of equ.(4) is a function of t only and R.H.S. is function of 

x only. 

Equ. (4) is true if each side is equal to some constant, say, 

  

  ( )

 ( )
   

  ( )

 ( )  

   ( )    ( )                    
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(5) 

And  

  ( )     ( )         

 (6) 

Considering equ.(5) and integrating 

             

 (7) 

            where C is a constant. 

  Taking equ. (6), comparing with the 

 

                    

                               

 (8) 

then   is eigen value and w (  ) is the corresponding eigen function. 

so       is eigen value of equ. (6) and  is corresponding eigen 

function. 

Hence solution of problem defined by equ. (1) and (2) is 

  (   )         ( )                         

(9) 

where C is a constant to be determined from the initial condition at t = 0, 

which gives 

        

so          

where           

is required solution. 

Particular case: 

(a) If              are eigen values of problem (8) and 

                                  are the corresponding eigen functions and 

             are constants then solution of equ. (1) 

    (   )  ∑    
      ( )

 
    

        ∑     
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(b) Let            be a countable set of eigen values with 

corresponding eigen function           so that 

   ∑   
      ( )

 

   

              ∑    ( )

 

   

          

Exp. Find the solution of the non-linear porous medium equation 

    (  )            (   )          (1) 

Where                           

Sol. We seek a solution of equ. (1)  of the type 

 (   )    ( ) ( )      (2) 

From (1) and (2) 

 ( )  ( )  (   )     

Dividing by     

  ( )

    
   

                           

 (3) 

L.H.S. is a function of t only and R.H.S. is a function of   only. 

Equ.3 is true if each side is equal to some constant say   

  ( )

     

    

    
       

Where   is a constant. 

     (   )      

  ,(   )    -
 

   
      

 (4) 

             

 (5) 

Suppose   | |  is solution of equ. (5) where   is a constant to 

be  determined. 

     | |  
 

 | |        ,      - 

Using in equ. (5) 

| |        ,      -    | |                     

(6) 

In order to hold equ. (6) in  
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     (      )              

(7) 

So solution of equ. (1) is 

  ,(   )     -
 

    | |            

(8) 

Where      are given by equ. (7) 

Remark. In equ. (8)   is singular when 

(   )               

  
 

(   ) 
  ∗ (   )   ∗                              

Check your progress 

1. Explain about Separation of variables. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

2. Find the solution of the non-linear porous medium equation 

    (  )            (   )       

             Where                           

------------------------------------------------------------------------------

---------------------------------------------------------------------- --------

------------------------------------------------------------------------------  

14.3 SIMILARITY SOLUTION 
 

Certain symmetries of partial differential equation help to convert 

them in ordinary differential equations. 

Def. Plane Travelling Wave : 

A Solution  (   ) of the partial differential equations of two 

variables     ∈   of the form 

  (   )    (    )                  ∈          ∈   

Represents a travelling wave with speed   and velocity profile    

Generalization. A Solution  (   ) of a partial differential 

equations in     variables   (          ) ∈      ∈   having 



Notes 

188 

the form 

 (   )   (      ) 

Is called a plane wave with wave front normal to  ∈     

Exponential Solution : The exponential solution of partial 

differential equations is 

 (   )     (      )
 

Where   ∈      (           ) ∈       being frequency 

and*  +    
 

 the wave number. 

Exp. The heat equation 

        

has the exponential solution. 

    (    | |  )
 

  
 | |  [ 

   
] 

 
 | |  

       and  
 | |                              ( )  

Here  the term 

 
 | |  

  corresponds the dissipation of energy.  

Exp.  The wave equation 

0ttu u 
has exponential solution 

 ( )
t

i y x y
u e


   

Since w is real, no dissipation effects occur.  

Exp. The dispersive equation 

0 (0, )t xxxu u inR     

has the exponential solution 

3( )i y x y tu e    

No dissipation of energy. Also the velocity of propagation 

depends on frequency. Hence dispersion takes place.  

Exp. Barenblaltt‘s Solution 

Consider the porous medium equation 

(0, )n

tu u oinR         (1) 

Where 0u   and 1   is a constant. 

Sol. We seek a solution of equ.(1) of the form 
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1
( , )

x
u x t v

t t

 
  

 
    ,nx R   0t    

Where ,   are un knowns. 

1
( , ) ( )u x t v y

t
   

Where y x t


   

 From equation (1) and (2) 

2 1

1
( ) . ( ) 0v y y Dv y v

t



  
  

  
    

To Convert equ.(3) into an equation independent  of t, we must 

have 

2 1 0       or 

1 2

1










  

Hence equ. (3) gives 

. 0v y Dv v       

We seek a radial solution of equ.(5) 

Let it be 

( ) ( )v y w r  where r y   

From equ.(5) and (6) 

'' 2'( ) ( ) ( 1)( ) ' 0nw w r r w n w r          

Where dash denotes derivatives w.r.t. r.  

To make it exact differential, Multiplying by 2n    and taking 

n   1 

'
1( ) ' ( ) ' 0n nr w r w    

  

Integrating and assuming that as 0r   , ' 0w w   

1( ) ' 0n nr w r w    

 ( ) 'w rw     

1w rw      

Or  2w r 



 
  

Again integrating 
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2
1

2 ( 1)

r
w b 

 

 
 


  

Where b is a constant. 

 

1

1
2( 1)

( )
2

w r b r
 



 
   

 
  

Hence 

  

 

Where 

 
1 2

1
n


 




 


  

I.E.  
1

2 n n





 
  

2

n

n n





 
  

Check your progress 

Explain about Similarity solutions. 

----------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

14.4 CONNECTING NON-LINEAR 

PARTIAL DIFFERENTIAL EQUATIONS 

TO LINEAR PARTIAL DIFFERENTIAL 

EQUATIONS 
 

14.4.1 Cole-Hopf transformation 
Consider the initial value problem for a quasi -linear parabolic 

equation 

2
0tu a u b Du      in (0, )nR       (1) 

u g   on { 0}nR t        (2) 

Where 0; ,a a b  are constants. 

1
2 1

2

( 1)
( )

2

x
v y b

t
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Sol. Let ( )w u        (3) 

Where u is a smooth solution of equ.(1) and : R R   is a smooth 

function. We seek   such that w solves the linear equation. 

From (1) and (3) 

'( )Dw u Du   

2
'( )tw u a u b Du    

 
  

2 2
"( ) '( )a w u Du b u Du     

    

 
2

, "( ) '( )tHence w a w a u b u Du        

We choose   such that 

"( ) '( ) 0a u b u           (4)  

So we have 

0tw a w            (5) 

To find the solution of equ. (4) 

Auxiliary equation is 2 0am bm    

Roots with 0,m b a    

Hence 

( )( ) ,b a uu e C   where C is constant. 

Neglecting the constant 

( )( , ) b a uw x t e         (*) 

( )( ,0) b a gw x e        (6) 

Combing (5) and (6) 

0tw a w    in (0, )nR     

b
g

aw e


   on { 0}nR t   

Which is heat equation having the solution 

2

4
/2

1
( , )

(4 ) n

x y b
g

aat
n

R

w x t e e dy
at

  

      nx R   

Or  ( , ) log
a

u x t w
b
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2

4
/2

1
( , ) log

(4 ) n

x y b
g

aat
n

R

a
u x t e e dy

b at

   
  
  

     , 0nx R t    

This is the required Solution. Equation (*) is known as Cole Hopf 

transformation. 

Exp.Find the solution of Burger‘s Equation with Viscosity 

tu a  
xxu u   0xu    in (0, )R    

u g   on { 0)R t        (1) 

Sol. Let us take 

( , ) : ( . )

x

w x t u y t dy


     

( ) : ( )

x

h x g y dy


         (2) 

So that , ( ,0) ( ,0) ( ) '( )x xw u w x u x g x h x      

Fromo (1) and (3) 

xtw a  
xxx xw w  0xxw   in (0, )R    

21
 0   in R (0, )

2
t xx xw a w w

x

  
       

  

Thus, problem is converted to 

21
  =0  in R (0, )

2
t xx xw a w w      

( ,0) ( )     on  R { 0}w x h x t        (4) 

The equation (4) is a quasi –linear parabolic equation (previous 

example) with b=
1

2
. So solution of equ.(4) is 

2

4
/2

1
( , ) 2  log

(4 ) n

x y b
g

aat
n

R

w x t a e e dy
at

   
  
  

   

Differentiating w.r.t. x   

 

2

2

( )
 

4 2

( )
 

4 2

 

x y h y
dy

at a

x x y h y
dy

at a

x y
e

t
u w

e

 



 





 




  

This is required solution 

14.4.2. Potential Function 
By use of potential function, non-linear partial differential 
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equation can be converted to linear partial differential equations.  

Exp. Consider the Euler‘s equation for inviscid, incompressible 

flow 

3.   in (0, )tu u Du Dp f R        

3 0 in (0, )div u R     

3 on ( 0)u g R t          (1) 

Where  and  are f g  prescribed functions, and  are unknowns.u p   

Sol. Let the external body force be derived from potential function h, 

Such that 

f Dh   

Let the Velocity u be derived from the  potential v s.t. 

u Dv   

From equ.(1) and  (3) 

 0div u v     

So from equ. (4) we can find v and thus u. 

From (1) and  (3) 

 ( ) -tDv Dv D Dv Dp Dh     

Or 

21
0

2
tD v Dv p h

 
    

 
  

Integrating 

21

2
tv Dv p h     

Which is Bernoulli‘s equation to get p. 

14.5 TRANSFORM METHODS 
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14.5.1 Fourier Transforms 
We now discus the transform methods to solve linear and non-linear 

partial differentiation equations. First we define Fourier transform over 

 1L  and 2L  spaces, respectively.  

Def. Let 
1( ),nu L R   we define the Fourier transform of  ( )u x , denoted 

by ( ) u y as  

 
 .

/2

1
( )  ( )           

2 n

i x y n

n

R

u y e u x dx y R


    

and its inverse Fourier transform 

 
.

/2

1
( ) :  ( )           

2 n

ix y n

n

R

u y e u x dx y R


   

Since  11  and ( )i xy ne u L R     

So integral converges for each y. 

Plancherel’s theorem  

Assume that 1 2( ) ( ) thenn nu L R L R    

 2,  ( )nu u L R  and  

 
2 2 2( ) ( ) ( )

ˆ  =n n nL R L R L R
u u u       (1) 

Proof. To Prove (1). We prove three results 

(i) ˆ ˆ( ) ( ) ( ) ( ) 
n nR R

v y w y dy v x w x dx    

L.H.S.= 
 

.

/2

1
( ) [ ( )  ]

2 n n

ix y

n

R R

v y w x e dx dy




    

 
/2

1
( ) ( )   

2 n n

ixy

n

R R

w x y e dx dy




   

ˆ ( ) ( ) 
nR

w x v x dx   

Hence the result. 

(ii) If 1 2,  ( ) ( )n nu v L R L R    

Then /2 ˆ ˆ( * ) (2 )nu v uv   

Where * denotes the convolution operator.  
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By def. 

* ( ) ( )
nR

u v u z v x z dz    

 
 

 

  

/2

( )

/2

1
* ( ) ( )

2

1
           ( ) ( )

2

n n

n n

i x y

n

R R

iy x z izy

n

R R

u v e u x v x z dx

v x z e dx e u z dz





 

  

  
  

  

 

 

 

  

 ˆ( ) ( )
n

izy

R

v y e u z dz    

 /2ˆ( ) ( )(2 )nv y u y    
  

 /2 ˆ ˆ(2 ) ( ) ( )n u y v y   

(iii) Consider 

22

1

i i i

n

n
ixy t

x y tx

i RR

e x dx e dx
 

 



    

                  But 

2x
2

x yi i i
t i

i i i
tix y tx t

i

R

e dx e dx

 
 

    
  



   

      

    =

2

2
4

i  where +
2

ty
t

z

i

iye
e dz z t x

tt

 





 
  

 
   

         = 

2

4
iy

te

t




 

Hence  
2

2
/2

/4

n

n
ixy t x y t

R

e dx e
t

   
  
 

  

Proof of theorem 

Choosing a function for 0  

  

 

 

2

/2

( )

1
ˆ ( ) ( )  (using result (iii), putting )

2 n

x

ixy

n

R

v x e

v y e v x dx t








 



 
  

 

2
/4

/2

1

2

y

n
e
 




      (2) 

2 2
i iyi

+
2 2  

i i

iy
t x t dx

t te
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Hence  

 

22 /4

/2

1
ˆ ( ) ( )     (using result (i))

2n n

y x

n

R R

w y e dy w x e dx
  




    

        (3) 

Taking limit as 0   

 

2
/4

/2
0

1
ˆ ( ) ( )  

2n n

x

n

R R

w y dy lt w x e dx
 





   

2
/2 2(2 ) (0)   where 

4

n i
i

x
w Z 


    (4) 

Suppose 
1 2( ) ( )n nu L R L R    

and set ( ) : = ( ),   is the conjugate if uv x u x u . 

     ( ) : = *

( ) ( )
nR

w x u v

u z v x z dz 
  

/2ˆ ˆ ˆ(2 ) ,nw u v      (by result  II) 

But  
 

/2

1
ˆ ( )  

2 n

ixy

n

R

v e u x dx


   

 
  

/2

1
   ( )  

2 n

i x y

n

R

e u x dx


   

 
  

/2

1
   ( )  

2 n

i x y

n

R

e u x dx


   

ˆ( )u y   

 
2/2

ˆ ˆ2
n

w u    

From (4) and (5) 

2
/2 /2ˆ(2 ) (2 ) (0)

n

n n

R

u dy w    

Or   
2

ˆ   = ( ) ( )
n nR R

u dy u z u z dz    

  
2

ˆ
nR

u dz        (by def.) 

2 2( ) ( )
ˆ n nL R L R
u u   

Similarly 2 2( ) ( )n nL R L R
u u   

(the result can be obtained by previously argument changing i to –i) 
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Hence 2 2 2( ) ( ) ( )
ˆn n nL R L R L R

u u u    

Note 

Since 2 1 2

k 1( ) choose a sequence {u } ( ) ( ) withn n n

ku L R L R L R

     

2  in ( ).n

ku u L R   

By (1) 

2 2 2( ) ( ) ( )
ˆ ˆ

n n nk j k j k jL R L R L R
u u u u u u      

2

1
ˆ ˆ{ }  is a cauchy sequence in ( ) which converges to .n

k ku L R u


  

So 2 nˆ ˆ in L (R )ku u        

Def. Fourier Transform of u over  2 nL R .    

Let 
2 ( ) thennu L R   

2 2 2( ) ( ) ( )
ˆ n n nL R L R L R
u u u   

So 
2ˆ, ( )nu u L R      (by above theorem) 

Hence  2ˆ,  are well defined over . nLu Rv   

Properties of Fourier transform: 

Assume  2, nu v L R   

(i) ˆ ˆ    
n nR R

u v dx u v dy    

(ii) ˆ( )D u iy u    

for each multiindex 
2 s.t. ( )nD u L R    

Proof. Let 
2, ( ) and   n nu v L R C    

Then 

2 2
ˆ ˆ    (Usiing plancherel's theorem)u v u v      

i.e. ˆ ˆ ˆ ˆ( )( ) ( )(( ))
n nR R

u v u v dx u v u v dy           


2 2

( ) ( ) ( )
nR

u v u v v u v dx           

2 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

nR

u v u v u v dy           

Or  
4

ˆˆ ˆ ˆ( ) ( ) ( )
nR R

u v u v dx uv uv dy           (1) 
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Taking 1 in (1) respectively and subtracting we obtain    

ˆ ˆ ( ) 
n nR R

uv dx uv dy    

(ii) If u is smooth and has compact support 

 
 

/ 2

1
  

2 n

ix y

n

R

D u e D u dx 



    

 
/2

( 1)
( )  

2 n

ixy

n

R

D e u x dx







   

  

    

ˆ( ) ( )iy u y   

Exp. Solve the partial differential equation  

 in nu u f R           (1) 

Where 
2 ( )nf C R   

Sol. Taking Fourier transform of equation (1) 

2 ˆˆ ˆ( ) ,      niy u u f y R      

2

ˆ
ˆ

1

f
u

y



  

Taking inverse Fourier transform of (2) 

2

ˆ

1

v

f
u

y

 
    

  

*   whereu f B   

2

1

(1 )v
B

y



 

To find B, we know that 

0

1 tae dt
a



    

So 
 2
1

2

0

1

1

t y

e dt
y


 




   

 2
1

2 /2

0

1 1
 

(2 )1 n

v

t y ixy

n

R

e e dt dy
y 


  

   
  

    

 
/2

( 1)
( 1) ( ) ( )  

2 n

ixy

n

R

e iy u x dx
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/2

2/4

/2

0

1

2

n
t tt

n
e e x dt

 
  
     

2

/2 /2

0

1 4           x
(2 )

t

n

n n

x
e

t dt R
t






       (3) 

So, 

2

/2 /2

0

( )
1 4( , )     

(4 ) n

t

n n

R

x
f y e

tu x y dy dt
t


  

     

Here, B given in equation (3), is called the Bessel‘s potential. 

Exp. Find the solution of initial value problem o f heat equation. 

 

   0  in (0, )n

tu u R      

 o  { 0}nu g n R t     

Sol. Taking Fourier transform of equation (1) and (2) w.r.t the spatial 

variable x. 

2ˆ ˆ( ) 0      0               (3)tu iy u for t     

ˆ ˆ        for 0u g t         (4) 

Or 

2ˆ

ˆ
tu

y
u
    

Integrating 

2

ˆ ,      where   is a constant.y tu Ce C   

Since ˆ    (using (4))C g   

2

ˆ ˆ
y t

u ge


  

Taking inverse Fourier transform 

/2

*

(2 )n

g F
u


   

Where, 

 
2 v

t y
F e


  

2/4

/2

1

(2 )

t

n
e x

t
    

Hence solution is 
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2

/2

1
( , )  ( )

(4 ) 4n

n

R

x y
u x y g y e dy

t

 
   

Exp. Solve the Schrödinger‘s equation. 

0  in (0, )n

tiu u R           (1) 

     o  { 0}nu g n R t         (2) 

Where u and g are complex valued functions. 

Sol. Equ.(1) can be rewritten as 

0
( )

u
u

it


  

 
  

Which is obtained from heat equation replacing t by it. Hence we get  

 

2

4
/2

1
( , )  ( )    t 0

(4 ) n

i x y

t
n

R

u x y e g y dy
it



      (3) 

Which is required solution. 

Remark. From equ. (3), we can obtain the fundamental solution of 

Schrodinger equation. 

2

,4
/2

1
( , )            x    t 0

(4 ) n

i x

nt
n

R

x y e R
it




    

Exp. Find the solution of initial value problem 

0  in (0, )n

ttu u R          (1) 

n                  on R { 0}
0t

u g
t

u

 
 

 
      (2) 

Sol. Taking Fourier transform of equation (1) w.r.t. x 

2
ˆ ˆ 0    for 0ttu y u t         (3) 

ˆ ˆ ˆ    0    for 0u g u t         (4) 

We seek an exponential solution of equ.(3). Let 

ˆ     where ,  tu e R      are to be determined. 

From (1) and (3) 

2 2
0y     

i y     

 1 2
ˆ  +

i y t i y t
u e e   

Using equation (2), we obtain 
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1 2 0     

1 2    (say)      

And ˆ / 2g    

Hence, 

ˆ
( , ) ( )

2

i y t i y tg
u x t e e


    

Taking inverse Fourier transform 

4

/2

ˆ1
( , )  ( )         ,   0

(2 ) 2

i y t i y t ixy n

n

R

g
u x t e e e dt x R t




     

Is the required solution. 

14.5.2 Laplace Transforms 
Laplace transform method is useful for functions defined on R  i,e.

1(0, ) if ( )u L R    we define the Laplace transform of u 

0

( ( )) :  = ( )      s 0stL u s e u t dt



    

We denoted by .u   

Exp. Solve the heat equation 

0  in (0, )tv v U        (1) 

        { 0}v f on U t        (2) 

Sol. Taking Laplace transform of (1) w.r.t. t 

0

( , ) ( , )  stv x s e v x t dt



    

0

 ( , )  st

te v x t dt



   

-

0

0

( , ) ( , )  st ste v x t se v x t dt


      

0
( , ) ( , ) ste v x t sv x s

    

( ) ( )f x sv s     

Hence 

( ) ( )v s sv s f         (3) 

Equation (3) is called Resolvent equation. The solution of resolvent 

equation is Laplace transform of equation  (1).  

EXERCISE: 
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1.  Solve the Hamilton Jacobi equation 

    ( ) 0  in (0, )n

tu H Du R     

  Where H is the Hamilton function. 

2.  Find the exponential solution of Schrodinger‘s equation 

    0  in n

ti u u R   

3.  Solve the telegraph equation. 

2 0  in (0, )n

tt t xxu du u R      

       on { 0}tu g u h R t      

For d > 0. 

4.  Prove that 

(i)  if 
1 2, ( ) ( ) thenn nu v L R L R    

/2
ˆ ˆ( * ) 2 ,

nnu v u v   

(ii)   
vˆ( )u u   

14.6 LET US SUM UP 
In this unit we have discussed about Separation of variable, Similarity 

solutions, Connecting non-linear partial differential equations to linear 

partial differential equations, Cole-Hopf transformation, Fourier 

Transforms, Laplace Transforms. Sum or product of undetermined 

functions and form ordinary differential equations. Symmetries of 

partial differential equation help to convert them in ordinary 

differential equations. The exponential solution of partial 

differential equations. Use of potential function, non-linear partial 

differential equation can be converted to linear partial differential 

equations. 

14.7 KEY WORDS 
1. Certain symmetries of partial differential equation help to 

convert them in ordinary differential equations. 

2. The exponential solution of partial differential equations.  

3. The heat and wave equation 

4. By use of potential function, non-linear partial differential  

equation can be converted to linear partial differential equations.  

5. Properties of Fourier transforms 
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6. Properties of Lapalce transforms. 

 

14.8 QUESTIONS FOR REVIEW 
 

1. Discuss about Separation of variables. 

2. Discuss about connecting non-linear partial differential equations 

to linear partial differential equations. 

3. Discuss about Laplace Transforms 
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5. R. Churchil & J. Brown, Fourier Series & Boundary Value Problems. 
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8. Partial Differential Equations, -Walter A.Strauss 

9. Partial Differential Equations,-John K.Hunter 

10. Partial Differential Equations,Erich Mieremann 

11. Partial Differential Equations,-Victor Ivrii 

 

14.10 ANSWERS TO CHECK YOUR 

PROGRESS 
1. See section 14.2 

2. See section 14.2 

3. See section 14.3 

 

 

 


